UZH-Logo

Maintenance Infos

Clinical feasibility of accelerated, high spatial resolution myocardial perfusion imaging


Manka, R; Vitanis, V; Boesiger, P; Flammer, A J; Plein, S; Kozerke, S (2010). Clinical feasibility of accelerated, high spatial resolution myocardial perfusion imaging. JACC: Cardiovascular Interventions, 3(7):710-717.

Abstract

OBJECTIVES: The aim of this study was to assess the clinical feasibility and diagnostic performance of an acceleration technique based on k-space and time (k-t) sensitivity encoding (SENSE) for rapid, high-spatial resolution cardiac magnetic resonance (CMR) myocardial perfusion imaging.

BACKGROUND: The assessment of myocardial perfusion is of crucial importance in the evaluation of patients with known or suspected coronary artery disease. CMR myocardial perfusion imaging performs favorably compared to single photon-emission computed tomography and offers higher spatial resolution, particularly when combined with scan acceleration techniques such as k-t SENSE. A previous study showed that k-t SENSE accelerated myocardial perfusion CMR with 5-fold acceleration is feasible and delivers high diagnostic accuracy for the detection of coronary artery disease. Higher acceleration factors have not been attempted clinically because of concerns over temporal blurring effects of the time-varying signal during contrast bolus passage.

METHODS: Twenty patients underwent myocardial perfusion CMR imaging using a 3.0-T whole-body CMR imager before diagnostic X-ray coronary angiography. Perfusion images were obtained using an extension of the k-t SENSE method using parallel imaging to double the spatial resolution of the k-t SENSE training images. This extension, termed k-t SENSE+, permitted 8-fold nominal scan acceleration and an in-plane spatial resolution of up to 1.1 x 1.1 mm(2). Perfusion scores were derived by 2 blinded observers for 16 myocardial segments and compared to quantitative analysis of X-ray coronary angiography.

RESULTS: CMR data were successfully obtained in all 20 patients. High diagnostic accuracy was achieved using CMR, as reflected by areas under the receiver-operator characteristic curve of 0.94 and 0.82 for detecting stenoses >50% and >75%, respectively. Observer agreement between 2 readers had a kappa value of 0.92. The areas under the receiver-operator characteristic curves for the left anterior descending, left circumflex, and right coronary artery territories with stenoses >50% were 0.75, 0.92, and 0.79, respectively.

CONCLUSIONS: Accelerated CMR perfusion imaging is clinically feasible and offers excellent diagnostic performance in detecting coronary stenosis.
Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

OBJECTIVES: The aim of this study was to assess the clinical feasibility and diagnostic performance of an acceleration technique based on k-space and time (k-t) sensitivity encoding (SENSE) for rapid, high-spatial resolution cardiac magnetic resonance (CMR) myocardial perfusion imaging.

BACKGROUND: The assessment of myocardial perfusion is of crucial importance in the evaluation of patients with known or suspected coronary artery disease. CMR myocardial perfusion imaging performs favorably compared to single photon-emission computed tomography and offers higher spatial resolution, particularly when combined with scan acceleration techniques such as k-t SENSE. A previous study showed that k-t SENSE accelerated myocardial perfusion CMR with 5-fold acceleration is feasible and delivers high diagnostic accuracy for the detection of coronary artery disease. Higher acceleration factors have not been attempted clinically because of concerns over temporal blurring effects of the time-varying signal during contrast bolus passage.

METHODS: Twenty patients underwent myocardial perfusion CMR imaging using a 3.0-T whole-body CMR imager before diagnostic X-ray coronary angiography. Perfusion images were obtained using an extension of the k-t SENSE method using parallel imaging to double the spatial resolution of the k-t SENSE training images. This extension, termed k-t SENSE+, permitted 8-fold nominal scan acceleration and an in-plane spatial resolution of up to 1.1 x 1.1 mm(2). Perfusion scores were derived by 2 blinded observers for 16 myocardial segments and compared to quantitative analysis of X-ray coronary angiography.

RESULTS: CMR data were successfully obtained in all 20 patients. High diagnostic accuracy was achieved using CMR, as reflected by areas under the receiver-operator characteristic curve of 0.94 and 0.82 for detecting stenoses >50% and >75%, respectively. Observer agreement between 2 readers had a kappa value of 0.92. The areas under the receiver-operator characteristic curves for the left anterior descending, left circumflex, and right coronary artery territories with stenoses >50% were 0.75, 0.92, and 0.79, respectively.

CONCLUSIONS: Accelerated CMR perfusion imaging is clinically feasible and offers excellent diagnostic performance in detecting coronary stenosis.
Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

Citations

21 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 17 Jan 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2010
Deposited On:17 Jan 2011 18:26
Last Modified:05 Apr 2016 14:29
Publisher:Elsevier
ISSN:1876-7605
Additional Information:Comment in: JACC Cardiovasc Imaging. 2010 Jul;3(7):718-9.
Publisher DOI:https://doi.org/10.1016/j.jcmg.2010.03.009
PubMed ID:20633848
Permanent URL: https://doi.org/10.5167/uzh-40381

Download

[img]
Filetype: PDF - Registered users only
Size: 348kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations