UZH-Logo

Maintenance Infos

HZ166, a novel GABA(A) receptor subtype-selective benzodiazepine site ligand, is antihyperalgesic in mouse models of inflammatory and neuropathic pain


Di Lio, A; Benke, D; Besson, M; Desmeules, J; Daali, Y; Wang, Z J; Edwankar, R; Cook, J M; Zeilhofer, H U (2011). HZ166, a novel GABA(A) receptor subtype-selective benzodiazepine site ligand, is antihyperalgesic in mouse models of inflammatory and neuropathic pain. Neuropharmacology, 60(4):626-632.

Abstract

Diminished GABAergic and glycinergic inhibition in the spinal dorsal horn contributes significantly to chronic pain of different origins. Accordingly, pharmacological facilitation of GABAergic inhibition by spinal benzodiazepines (BDZs) has been shown to reverse pathological pain in animals as well as in human patients. Previous studies in GABA(A) receptor point mutated mice have demonstrated that the spinal antihyperalgesic effect of classical BDZs is mainly mediated by GABA(A) receptors containing the α2 subunit (α2-GABA(A) receptors), while α1-GABA(A) receptors, which mediate the sedative effects, do not contribute. Here, we investigated the potential analgesic profile of HZ166, a new partial BDZ-site agonist with preferential activity at α2- and α3-GABA(A) receptors. HZ166 showed a dose-dependent antihyperalgesic effect in mouse models of neuropathic and inflammatory pain, triggered by chronic constriction injury (CCI) of the sciatic nerve and by subcutaneous injection of the yeast extract zymosan A, respectively. This antihyperalgesic activity was antagonized by flumazenil and hence mediated via the BDZ-binding site of GABA(A) receptors. A central site of action of HZ166 was consistent with its pharmacokinetics in the CNS. When non-sedative doses of HZ166 and gabapentin, a drug widely used in the clinical management of neuropathic pain, were compared, the efficacies of both drugs against CCI-induced pain were similar. At doses producing already maximal antihyperalgesia, HZ166 was devoid of sedation and motor impairment, and showed no loss of analgesic activity during a 9-day chronic treatment period (i.e. no tolerance development). These findings provide further evidence that compounds selective for α2- and α3-GABA(A) receptors might constitute a novel class of analgesics suitable for the treatment of chronic pain.

Diminished GABAergic and glycinergic inhibition in the spinal dorsal horn contributes significantly to chronic pain of different origins. Accordingly, pharmacological facilitation of GABAergic inhibition by spinal benzodiazepines (BDZs) has been shown to reverse pathological pain in animals as well as in human patients. Previous studies in GABA(A) receptor point mutated mice have demonstrated that the spinal antihyperalgesic effect of classical BDZs is mainly mediated by GABA(A) receptors containing the α2 subunit (α2-GABA(A) receptors), while α1-GABA(A) receptors, which mediate the sedative effects, do not contribute. Here, we investigated the potential analgesic profile of HZ166, a new partial BDZ-site agonist with preferential activity at α2- and α3-GABA(A) receptors. HZ166 showed a dose-dependent antihyperalgesic effect in mouse models of neuropathic and inflammatory pain, triggered by chronic constriction injury (CCI) of the sciatic nerve and by subcutaneous injection of the yeast extract zymosan A, respectively. This antihyperalgesic activity was antagonized by flumazenil and hence mediated via the BDZ-binding site of GABA(A) receptors. A central site of action of HZ166 was consistent with its pharmacokinetics in the CNS. When non-sedative doses of HZ166 and gabapentin, a drug widely used in the clinical management of neuropathic pain, were compared, the efficacies of both drugs against CCI-induced pain were similar. At doses producing already maximal antihyperalgesia, HZ166 was devoid of sedation and motor impairment, and showed no loss of analgesic activity during a 9-day chronic treatment period (i.e. no tolerance development). These findings provide further evidence that compounds selective for α2- and α3-GABA(A) receptors might constitute a novel class of analgesics suitable for the treatment of chronic pain.

Citations

28 citations in Web of Science®
31 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:10 Jan 2011 09:50
Last Modified:05 Apr 2016 14:29
Publisher:Elsevier
ISSN:0028-3908
Publisher DOI:10.1016/j.neuropharm.2010.11.026
PubMed ID:21145329

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations