UZH-Logo

Maintenance Infos

Nogo-A stabilizes the architecture of hippocampal neurons


Zagrebelsky, M; Schweigreiter, R; Bandtlow, C E; Schwab, M E; Korte, M (2010). Nogo-A stabilizes the architecture of hippocampal neurons. Journal of Neuroscience, 30(40):13220-13234.

Abstract

Although the role of myelin-derived Nogo-A as an inhibitor of axonal regeneration after CNS injury has been thoroughly described, its physiological function in the adult, uninjured CNS is less well known. We address this question in the hippocampus, where Nogo-A is expressed by neurons as well as oligodendrocytes. We used 21 d in vitro slice cultures of neonatal hippocampus where we applied different approaches to interfere with Nogo-A signaling and expression and analyze their effects on the dendritic and axonal architecture of pyramidal cells. Neutralization of Nogo-A by function-blocking antibodies induced a major alteration in the dendrite structure of hippocampal pyramidal neurons. Although spine density was not influenced by Nogo-A neutralization, spine type distribution was shifted toward a more immature phenotype. Axonal complexity and length were greatly increased. Nogo-A KO mice revealed a weak dendritic phenotype resembling the effect of the antibody treatment. To discriminate a possible cell-autonomous role of Nogo-A from an environmental, receptor-mediated function, we studied the effects of short hairpin RNA-induced knockdown of Nogo-A or NgR1, a prominent Nogo-A receptor, within individual neurons. Knockdown of Nogo-A reproduced part of the dendritic and none of the spine or axon alterations. However, downregulation of NgR1 replicated the dendritic, the axonal, and the spine alterations observed after Nogo-A neutralization. Together, our results demonstrate that Nogo-A plays a major role in stabilizing and maintaining the architecture of hippocampal pyramidal neurons. Mechanistically, although the majority of the activity of Nogo-A relies on a receptor-mediated mechanism involving NgR1, its cell-autonomous function plays a minor role.

Although the role of myelin-derived Nogo-A as an inhibitor of axonal regeneration after CNS injury has been thoroughly described, its physiological function in the adult, uninjured CNS is less well known. We address this question in the hippocampus, where Nogo-A is expressed by neurons as well as oligodendrocytes. We used 21 d in vitro slice cultures of neonatal hippocampus where we applied different approaches to interfere with Nogo-A signaling and expression and analyze their effects on the dendritic and axonal architecture of pyramidal cells. Neutralization of Nogo-A by function-blocking antibodies induced a major alteration in the dendrite structure of hippocampal pyramidal neurons. Although spine density was not influenced by Nogo-A neutralization, spine type distribution was shifted toward a more immature phenotype. Axonal complexity and length were greatly increased. Nogo-A KO mice revealed a weak dendritic phenotype resembling the effect of the antibody treatment. To discriminate a possible cell-autonomous role of Nogo-A from an environmental, receptor-mediated function, we studied the effects of short hairpin RNA-induced knockdown of Nogo-A or NgR1, a prominent Nogo-A receptor, within individual neurons. Knockdown of Nogo-A reproduced part of the dendritic and none of the spine or axon alterations. However, downregulation of NgR1 replicated the dendritic, the axonal, and the spine alterations observed after Nogo-A neutralization. Together, our results demonstrate that Nogo-A plays a major role in stabilizing and maintaining the architecture of hippocampal pyramidal neurons. Mechanistically, although the majority of the activity of Nogo-A relies on a receptor-mediated mechanism involving NgR1, its cell-autonomous function plays a minor role.

Citations

50 citations in Web of Science®
53 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

51 downloads since deposited on 05 Jan 2011
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:October 2010
Deposited On:05 Jan 2011 09:17
Last Modified:05 Apr 2016 14:31
Publisher:Society for Neuroscience
ISSN:0270-6474
Additional Information:Holder of copyright: The Society for Neuroscience
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1523/JNEUROSCI.1044-10.2010
PubMed ID:20926648
Permanent URL: http://doi.org/10.5167/uzh-41172

Download

[img]
Preview
Filetype: PDF
Size: 4MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations