Methane production in relation to body mass of ruminants and equids

Franz, R; Soliva, C R; Kreuzer, M; Steuer, P; Hummel, J; Clauss, M (2010). Methane production in relation to body mass of ruminants and equids. Evolutionary Ecology Research, 12:727-738.

Postprint available at:
http://www.zora.uzh.ch

Posted at the Zurich Open Repository and Archive, University of Zurich.
http://www.zora.uzh.ch

Originally published at:
Methane production in relation to body mass of ruminants and equids

Ragna Franz¹, Carla R. Soliva², Michael Kreuzer², Patrick Steuer³, Jürgen Hummel³, Marcus Clauss¹*

¹Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich, Switzerland
²ETH Zurich, Institute of Plant, Animal and Agroecosystem Sciences, Universitätsstrasse 2, 8092 Zurich, Switzerland
³Institute of Animal Science, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee 15, D-53115 Bonn, Germany

*To whom correspondence should be addressed:
E-Mail: mclauss@vetclinics.unizh.ch
ABSTRACT

Background: Mammalian herbivores produce methane during digestion.

Questions: Do ruminants (such as bovids) produce more methane during digestion than do equids (non-ruminants)? What are the effects of allometric scaling of methane production when different species feed on similar diets?

Methods: From the literature, we collected a set of data on methane production (L d⁻¹) of ruminants (body mass 26-610 kg) and equids (208-850 kg) fed only roughage. To these data we added our own experimental results from three sheep (*Ovis orientalis aries*, 94 ± 4 kg) and three Mini-Shetland ponies (*Equus ferus caballus*, 97 ± 6 kg). We gave these six animals *ad libitum* access to the same batch of grass hay. We measured their food intake and methane production (using respiratory chambers), and calculated gut fill and food digestibility.

Results: Daily dry matter (DM) intake and DM digestibility were 39 ± 10 g kg⁻⁰.⁷⁵ d⁻¹ and 48 ± 2 % in sheep and 72 ± 16 g kg⁻⁰.⁷⁵ d⁻¹ and 41 ± 3 % in ponies; the calculated DM gut fill was 2.0 ± 0.5 % of body mass in sheep and 1.9 ± 0.4 % in ponies. Methane production was higher in sheep (30.3 ± 3.0 L d⁻¹) than in ponies (13.4 ± 4.6 L d⁻¹), representing 6.7 ± 1.7 and 1.5 ± 0.2 % of gross energy intake, respectively. The data set revealed a linear increase of methane production with body mass (i.e., *M¹*) in equids and ruminants. However, a ruminant produces 3.6 times as much methane as does an equid of comparable body mass.

Conclusions: Because energy and food intake scale allometrically with body mass (*M⁰.⁷⁵*), our results mean that energetic losses due to methane production (as a proportion of overall energy intake) increase with increasing body mass. The magnitude of the losses is enough to limit the maximum size of a ruminant body, but not that of an equid.

Keywords: herbivory, ruminant, hindgut fermenter, energetic losses, digestive physiology, excretion pattern, body size.
INTRODUCTION

Methane production is one of the unavoidable side-effects of vertebrate herbivory (Hackstein & Van Alen, 1996). Methanogenic microorganisms – members of the domain of the Archaea – are part of the microbial ecosystems present in the fermentation chambers of the gastrointestinal tracts of herbivores (Stevens & Hume, 1998). Archaea act as hydrogen sinks, converting H₂ and CO₂ to methane, thus keeping the partial pressure of H₂ low; this enhances the activity of fermenting microorganisms in the gut ecosystems (Jensen, 1996). It is generally accepted that methane production in ruminants is higher than in other herbivores such as hindgut fermenters (e.g. equids) or non-ruminant foregut fermenters (e.g. kangaroos) (Crutzen et al., 1986; Clauss et al., 2010). This might be attributed either to higher counts of Archaea in the rumen as the major fermentation chamber of ruminants (Morvan et al., 1996) or to a higher prevalence of other hydrogen sinks such as reductive acetogenesis in hindgut fermenters (Prins & Lankhorst, 1977; Fievez et al., 2001).

There has been a shift of the focus in research on methane production in herbivores, from concerns about methane representing a significant feed energy loss in the animal to methane as greenhouse gas thus contributing to global warming (Ellis et al., 2007), resulting in a massive body of agricultural research. Comparative aspects of methane production have so far mostly been of interest for completing the estimation of national or global greenhouse gas inventories with respect to the contribution of non-ruminant domestic and free-ranging herbivores (e.g. Crutzen et al., 1986; Vermorel, 1997). In contrast, evolutionary or ecophysiological aspects of methane production have received little attention (Clauss & Hummel, 2005). This is best exemplified by the fact that the relationship between body mass (M) and methane production has hardly been investigated. Such a relationship has so far been reported as secondary findings in sheep (Pelchen & Peters, 1998) and cattle (Pavao-Zuckerman et al., 1999). Approaches to determine factors of influence on methane production in domestic ruminants have focused on the dietary composition of feed and plant secondary
metabolites (Beauchemin et al., 2008), feeding/intake levels (Ellis et al., 2007), pasture management (e.g. DeRamus et al., 2003), genotype and selection (Estermann et al., 2002; Münger & Kreuzer, 2008) – factors that can be influenced by agricultural management practices. To our knowledge, the only comprehensive approach to investigate an effect of body mass on herbivore methane production was recently presented by Smith et al. (2010); these authors derived allometric equations for the production of methane from literature data to facilitate extrapolations to fossil herbivores, and to draw conclusions on the relationship between megafaunal extinctions and atmospheric methane.

Body size limitations due to methane production have been proposed for large herbivores (Prins & Kreulen, 1991; Van Soest, 1994). These considerations do not refer to the methane production usually observed in herbivores, which is due to a group of fast-growing Archaea that use H₂ and CO₂. They address another group of slow-growing Archaea that use acetate – one of the major fermentation products of gut Bacteria, and an important energy source for the vertebrate host – and convert it to methane, thus theoretically depriving the herbivore of one of its most important energy resources. These slow-growing Archaea have a generation time of approximately 4 days (Van Soest, 1994). If ingesta retention time is assumed to increase systematically with M, there should be a body size threshold above which retention times in the fermentation chamber exceed this 4-day limit. Then, energetic losses due to acetate-based methanogenesis would theoretically become prohibitive. Prins and Kreulen (1991) presented a model calculating a maximum possible body mass for ruminants of 1 to 1.5 metric tons. However, the validity of this concept is doubtful, given the facts that ingesta retention does not increase systematically with M in large herbivores, and that ingesta retention times exceeding 4 days have been measured in several vertebrate herbivores such as koalas (Phascolarctos cinereus), dugongs (Dugong dugon), sloths (Bradypus tridactylus) (reviewed in Clauss et al., 2007) and land tortoises (Hatt et al., 2002). In contrast, the
question whether methane production due to faster-growing *Archaea* could impose a body size limit or a digestive disadvantage at increasing body size has so far not been addressed.

We compared methane production in ruminants and horses of similar size on the same diet, and added the results to literature data measured in ruminants and equids fed on roughage-only diets, to test for a scaling of methane production with *M*. In particular, we expected that the resulting scaling relationship would either be similar to that of the volume of gut contents (scaling linearly with *M*, i.e. *M*\(^1.0\)), or similar to energy / food intake (scaling with *M*\(^0.75\)), or similar to ingesta retention time (expected to result in no evident scaling with *M*) (Clauss *et al.*, 2007).

METHODS

Three adult female sheep (*Ovis orientalis aries*, 94 ± 4 kg) and three adult female mini Shetland ponies (*Equus ferus caballus*, 97 ± 6 kg) were housed individually and were offered at *ad libitum* access to grass hay originating from one batch exclusively. This hay contained (g/kg dry matter (DM)): organic matter, 803; crude protein, 58; neutral detergent fibre (NDF), 582; acid detergent fibre, 326; acid detergent lignin, 46; gross energy 15.9 (MJ/kg DM). After an adaptation period of 2 weeks, the hay offered and the refusals were weighed daily, and faeces were completely collected at regular intervals (from 4 h at the beginning up to 12 h on the last day) for 7 days. Representative subsamples of the hay were analysed for contents of DM, nutrients and gross energy using standard laboratory methods (AOAC, 1997). In the faeces DM, NDF and combustion energy were determined, and digestibilities of DM, NDF and energy were calculated. Mean ingesta retention times (MRT) were determined as part of a larger comparative study (Steuer *et al.*, submitted) by feeding a particle (chromium-mordanted fibre, <2mm) marker prepared according to Udén *et al.* (1980); analyses and calculations of MRT were performed as described by Behrend *et al.* (2004). Gut DM fill was estimated using the exponential model of Holleman and White (1989). Following the 7-days
collection period, animals were placed for two consecutive 22.5 h-periods into open circuit respiration chambers constructed and operated as described in Soliva and Hess (2007). The two chambers had a volume of 4.55 m³ and provided constant humidity (60%), temperature (20 ±1°C), air flow (7.3 ± 0.1 m³ h⁻¹), and pressure (987 ± 8 hPa). Gas analysers were manually calibrated with calibration gases (calibration gas 1: pure nitrogen (N₂), calibration gas 2: 19.6% mol oxygen, 1.0% mol carbon dioxide, 0.1% mol CH₄). A possible drift of the analyser was numerically adjusted by performing repeated measurements of the outside air and calibration gases besides measurements of the chamber air composition. Methane concentrations were measured on a Binos 1001 (Fisher-Rosemount, Baar-Walterswil, Switzerland). Gas volumes were corrected for standard conditions (1013 hPa, 0 °C, 0% relative humidity). Methane production was expressed in absolute values and in relation to food intake, energy intake, and the intake of digestible energy and digestible NDF (as a measure of fibre).

The results from the present experiment were added to a literature collection of data on methane production in ruminants and equids of known body mass (M) fed roughage-only diets (n=57 with a M range of 26-610 kg for ruminants, and n=20 with a M range of 208-850 kg for horses; sources see Fig. 1) and a dataset on pigs from one study where the same diet was used over a M range of 23-113 kg (Christensen & Thorbek, 1987). Experimental data for the sheep and ponies were compared by t-test. The data collection was statistically analysed, after transforming the M and the methane data by the natural logarithm, using regression analysis and a General Linear Model (GLM) with methane production as the dependent variable, species group (ruminants, equids, pigs) as a factor and M as covariate (the species × M interaction was not significant) using PSAW 18.0 (SPSS Inc., Chicago, IL). The significance level was set to 0.05.
RESULTS

The hay intake of the sheep was little more than half of that of the horses (39 ± 10 vs. 72 ± 16 g kg\(^{-0.75}\) d\(^{-1}\); Table 1). Additionally, sheep had 1.8 times longer mean particle retention times (54 ± 4 vs. 26 ± 1 h), 1.2 times higher DM digestibilities (48 ± 2 vs. 41 ± 3 %), and a more than twofold higher methane production (30.3 ± 3.0 vs. 13.4 ± 4.6 L d\(^{-1}\)). Yet, the calculated total gut fill was similar in sheep (1.9 ± 0.5 kg DM or 2.0 ± 0.5 % of \(M\)) and horses (1.9 ± 0.5 kg DM or 1.9 ± 0.4 % of \(M\)). In sheep, methane output represented 6.7 ± 1.7 and 12.3 ± 3.1 % of gross energy and digestible energy intake, respectively, whereas it represented 1.5 ± 0.2 and 3.2 ± 0.7 % in horses. The sheep produced three times more methane per unit of digested fibre (digestible NDF) than the horses (92 ± 15 vs. 28 ± 9 L kg\(^{-1}\)).

Available data on methane production in ruminants (including domestic cattle, sheep and goats, and bison, red deer, and white-tailed deer) and equids (various breeds of domestic horses) suggest a systematic increase in methane output with \(M\) (Fig. 1). The few data available for South American camelids suggest a similar methane production as in ruminants. Growing pigs also showed an increase of methane output with body mass in the study included (Fig. 1). The scaling of methane production (in L d\(^{-1}\)) was

\[0.66 \times M^{0.97} \ (r^2=0.87; \ p<0.001; \ n=62; \ 95\% \ confidence \ interval \ (CI) \ for \ exponent \ 0.88-1.07) \]

in ruminants,

\[0.18 \times M^{0.97} \ (r^2=0.76; \ p<0.001; \ n=23; \ 95\% \ CI \ for \ exponent \ 0.72-1.22) \] in horses,

\[0.07 \times M^{0.99} \ (r^2=0.93; \ p<0.001; \ n=12; \ 95\% \ CI \ for \ exponent \ 0.79-1.19) \] in pigs.

In the GLM where methane production was considered as dependent variable, both \(M\) (\(F=205.2, \ p<0.001\)) and species group (\(F=6.06, \ p=0.003\)) were significant.

When expressed per unit of food intake (Fig. 2a) or as a proportion of gross energy intake (Fig. 2b), the data indicate a slight but significant increase with \(M\) in ruminants:

Methane production (in L kg\(^{-1}\) dry matter intake) was

\[16.6 \times M^{0.12} \ (r^2=0.25; \ p<0.001; \ n=45; \ 95\% \ CI \ for \ exponent \ 0.06-0.18) \].
Methane production (in % gross energy intake) was
\[3.5 \times M^{0.13} \quad (r^2=0.25; \ p<0.001; \ n=44; \ 95\% \ CI \ for \ exponent \ 0.06-0.20). \]

For horses, the resulting exponents for the scaling of methane production per unit of DM and gross energy intake were 0.26 and 0.17, respectively; the 95% CI of these exponents, however, included 0 in both cases, i.e. the regressions were not significant:

Methane production (in L kg\(^{-1}\) dry matter intake)
\[2.0 \times M^{0.26} \quad (r^2=0.29; \ p=0.056; \ n=13; \ 95\% \ CI \ for \ exponent -0.01-0.53). \]

Methane production (in % gross energy intake)
\[0.7 \times M^{0.17} \quad (r^2=0.16; \ p=0.171; \ n=13; \ 95\% \ CI \ for \ exponent -0.09-0.42). \]

DISCUSSION

Our results are consistent with the knowledge that methane losses constitute about 6-10% of the gross energy intake in forage-fed ruminants (Immig, 1996), with the average being very close to the default value of 6.5% assumed by the IPCC (2006), and that horses produce less methane than ruminants (Crutzen et al., 1986). Ideally, all comparisons should be made on the basis of digested plant cell wall or at least digestible energy, to rule out the possibility that differences in methane production are simply an effect of the amount of digested material taken up by the animal. The comparisons of methane production as a proportion of digestible energy or per unit of digested plant fibre in Table 1 indicate that even when comparing data on such a basis, systematic differences between ruminants and horses remain. These are strong indications for systematic differences in the microbial ecosystem between the species.

The collection of literature data demonstrates that a 100 kg-ruminant may have a similar methane output as a 400 kg-horse. The horses were comparatively poorer utilizers of the nutrients in the roughage and therefore had to ingest higher amounts than the sheep. This was associated with a shorter ingesta retention time in the horses but at a similar calculated DM gut fill in the two species. This means that ruminants have a significantly higher methane
production compared to equids even under the condition of a similar gut fill, and could be due to several factors (Vermorel et al., 1997a). Ingesta retention in ruminants is longer than in horses (Foose, 1982; Pearson et al., 2006; cf. Table 1) and hence gives the Archaea more time to produce methane. Accordingly, methane production was shown to be related to ingesta retention time in ruminants (Okine et al., 1989; Pinares-Patiño et al., 2003a). Thus, assuming that retention time is an important factor, methane production should be high as well in hindgut fermenters, such as rhinoceroses, and non-ruminant foregut fermenters, such as hippopotamus, which have ingesta retention times of the same magnitude as ruminants (Clauss et al., 2004; Clauss et al., 2005; Steuer et al., 2010). This assumption remains to be investigated.

The microbial profile in the fermentation chambers of the digestive tract differs between ruminants and horses. Horses have lower concentrations of Protozoa (Kern et al., 1974) and Archaea (Morvan et al., 1996) in the hindgut than ruminants have in their main fermentation chamber, the rumen. The putative effect of these differences is evident in the higher methane production of ruminants; the actual causes for the differences in the microbial gut ecosystem – the reason why rumination is apparently linked to such a high methane output - remain to be elucidated. Again, if it is hypothesized that the well-known differences in retention time and in the amount of non-microbial digestion of non-fibre carbohydrates suffice to explain the observed differences in methane production between ruminants and equids, then similar high levels of methane production as in ruminants should be observed in other non-ruminant foregut fermenters such as hippopotamuses, peccaries, sloths, macropods or even colobine monkeys. At least in the case of the macropods, the scarce existing evidence suggests that this is not the case (Kempton et al., 1976; von Engelhardt et al., 1978; Dellow et al., 1988).

With an even lower contribution of microbial fermentation to the overall energy gain from feed compared to the horses, pigs potentially have an even lower methane output at the same body mass and gut fill, but this remains to be investigated on roughage-only diets or diets
resembling the natural diet of suids. Existing data in domestic pigs suggest that high-fibre diets lead to an increase in methane production compared to the commonly fed low-fibre diets (Kirchgessner et al., 1991).

Whether methane production increases systematically with body mass has been suggested (Clauss & Hummel, 2005), observed incidentally in individual species (Christensen & Thorbek, 1987; Pelchen & Peters, 1998; Pavao-Zuckerman et al., 1999), and only once been demonstrated (in an unpublished data collection; Smith et al., 2010) so far. In itself, this finding is not surprising, because larger animals consume more food; more methane production is expected as the absolute amount of processed food increases. Rather, the pattern of the increase – the scaling with body mass – is of particular interest. A linear scaling of methane production with M, as suggested by the regression equations from our data collection (in contrast to the scaling with $M^{0.75}$ as assumed by IPCC 2006, p. 10.28; but in accord with findings of $M^{1.057}$ by Smith et al. 2010 for ruminants), has important consequences for general herbivore physiology and evolution. If this linear scaling can be confirmed in further studies, it would suggest that methane production might be, across body mass ranges within a digestion type (e.g. ruminant or equid), mainly a factor of gut capacity, as found within sheep (Pinares-Patiño et al., 2003a). Gut capacity (measured as wet contents) has been shown repeatedly to scale linearly with body mass (reviewed in Clauss et al., 2007). Because food intake scales with $M^{0.75}$ (reviewed in Clauss et al., 2007), a linear scaling of methane production with M would translate into increasing energetic losses due to methane per unit of food intake with increasing M. This is illustrated by the relationship of relative methane production – either per unit food intake or per unit of energy intake – in Fig. 2. For horses, these relationships were not significant, potentially due to the comparatively low sample size. The magnitude of proportionate methane production in ruminants per unit of energy intake is so large that a limit in body size increase in this group can be expected by the action of fast-growing, H_2 and CO$_2$-using Archaea alone (with methane losses approaching on average 9%
of gross energy intake at a M of one metric ton). A digestive system like that of the equids, in contrast, would not reach the same limitation even when scaled up to body sizes of the largest presumed hindgut fermenters, the mammalian Indricotheres (15 tons, Fortelius & Kappelman, 1993) or the dinosaur sauropods (up to 100 tons, Sander et al., 2010), with methane losses estimated at about 3.3-4.4% of gross energy intake. Whatever the causes of the increased methane production in ruminants are, its scaling with body mass may be responsible for the different body size ranges achieved by ruminant and non-ruminant herbivores (Clauss et al., 2003) and thus represent an intriguing example of a physiological constraint on the evolutionary history of a particular animal group. It also suggests, following Smith et al. (2010), that the composition of any given fauna, in terms of its body size range and in terms of the digestive strategy of its main players (ruminant vs. nonruminant), will influence the magnitude by which this fauna contributes to the composition of Earth’s atmosphere.

The present paper and the recent publication by Smith et al. (2010) independently compile, analyze, and interpret information on scaling of methane production with body size in herbivorous mammals. Interestingly, they both come up with scaling relations that differ from 3/4-power scaling, indicating that methane losses in herbivores increase disproportionately with increasing body mass. This will be an important topic for further research, also given the recent interest in the contribution of mammalian herbivores to greenhouse gas emissions.

ACKNOWLEDGEMENTS

We thank the Clinic for Ruminants of the Vetsuisse Faculty, University of Zurich (Prof. Dr. Dr. h.c. U. Braun) for logistic support, and James Brown for comments on previous versions of the manuscript. This is contribution no. 96 of the DFG Research Unit 533 “The Biology of Sauropod Dinosaurs”.
REFERENCES

Table 1. Feed intake, digestion and methane production in sheep and horses of similar body mass

<table>
<thead>
<tr>
<th></th>
<th>Sheep</th>
<th>Ponies</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Body mass (M) (kg)</td>
<td>93</td>
<td>91</td>
<td>99</td>
</tr>
<tr>
<td>DM intake (g kg(^{-0.75}) d(^{-1}))</td>
<td>45</td>
<td>28</td>
<td>43</td>
</tr>
<tr>
<td>Mean retention time (h)</td>
<td>54</td>
<td>58</td>
<td>47</td>
</tr>
<tr>
<td>DM digestibility (%)</td>
<td>47</td>
<td>51</td>
<td>46</td>
</tr>
<tr>
<td>Gut fill (kg DM)</td>
<td>2.3</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Methane (L d(^{-1}))</td>
<td>33.7</td>
<td>28.1</td>
<td>29.1</td>
</tr>
<tr>
<td>(L kg(^{-1}) DM intake)</td>
<td>24.8</td>
<td>34.4</td>
<td>21.6</td>
</tr>
<tr>
<td>(% of GE)</td>
<td>6.2</td>
<td>8.5</td>
<td>5.4</td>
</tr>
<tr>
<td>(% of DE)</td>
<td>10.0</td>
<td>15.8</td>
<td>11.0</td>
</tr>
<tr>
<td>(L kg(^{-1}) dNDF)</td>
<td>76</td>
<td>107</td>
<td>93</td>
</tr>
</tbody>
</table>

DM, dry matter; GE, gross energy; DE, digestible energy; dNDF, digestible neutral detergent fibre

*independent sample t-test comparing sheep and ponies
Fig. 1. Methane production in relation to body mass in ruminants (Ritzman & Benedict, 1938; Belyea et al., 1985; Terada et al., 1987; Margan et al., 1988; Okine et al., 1989; Hironaka et al., 1996; Klita et al., 1996; Vermorel, 1997; Vernet et al., 1997; Galbraith et al., 1998; Kurihara et al., 1999; McCaughey et al., 1999; Boadi & Wittenberg, 2002; Ulyatt et al., 2002; Pinares-Patiño et al., 2003a; Pinares-Patiño et al., 2003b; Carulla et al., 2005; Puchala et al., 2005; Swainson et al., 2007; Animut et al., 2008; Tiemann et al., 2008; Hart et al., 2009; and this study), South American camelids (Vernet et al., 1997; Pinares-Patiño et al., 2003b), horses (Ritzman & Benedict, 1938; Nehring, 1956; Vermorel, 1997; Vermorel et al., 1997a; Vermorel et al., 1997b; and this study) and pigs (Christensen & Thorbek, 1987). See results section for regression equations.
Fig. 2. Methane production a) per unit of dry matter intake (DMI) and b) per unit of gross energy intake (GEI) in relation to body mass in ruminants, horses and pigs. Same data sources as Fig. 1 (excluding those from which the respective measures could not be derived). See results section for regression equations.