UZH-Logo

Mapping of CBV changes in 5-HT(1A) terminal fields by functional MRI in the mouse brain


Mueggler, T; Razoux, F; Russig, R; Buehler, A; Mansuy, I M; Rudin, M (2011). Mapping of CBV changes in 5-HT(1A) terminal fields by functional MRI in the mouse brain. European Neuropsychopharmacology, 21(4):344-353.

Abstract

Visualization of brain activity in humans and animals using functional magnetic resonance imaging (fMRI) is an established method for translational neuropsychopharmacology. It is useful to study the activity of defined brain structures, however it requires further refinement to allow more specific cellular analyses, like for instance, the activity of selected pools of brain cells. Here, we investigated brain activity in serotonergic pathways in the adult mouse brain by using acute pharmacological challenge of 5-hydroxytryptamine (5-HT) 1A receptors. We show that administration of the 5-HT(1A) receptor agonist 8-OH-DPAT prompts a dose-dependent reduction in local cerebral blood volume (CBV) in brain areas rich in neurons expressing post-synaptic 5-HT(1A) receptor, including the prefrontal cortex, hippocampus and amygdalar nuclei. Region-specific inhibition of the response by co-injection of 8-OH-DPAT with the selective 5-HT(1A) receptor antagonist WAY-100635, or in 5-HT(1A) knock-out mice, suggests that 5-HT(1A) receptors are the primary targets of the agonist. Overall, the data demonstrate the feasibility of mapping region-specific serotonergic transmission in the adult mouse brain in vivo by non-invasive fMRI. The method opens novel perspectives for investigating 5-HT(1A) receptor functions in mouse models of human pathologies resulting from a dysfunction of the 5-HT(1A) receptor or the serotonergic system, including depression and anxiety.

Visualization of brain activity in humans and animals using functional magnetic resonance imaging (fMRI) is an established method for translational neuropsychopharmacology. It is useful to study the activity of defined brain structures, however it requires further refinement to allow more specific cellular analyses, like for instance, the activity of selected pools of brain cells. Here, we investigated brain activity in serotonergic pathways in the adult mouse brain by using acute pharmacological challenge of 5-hydroxytryptamine (5-HT) 1A receptors. We show that administration of the 5-HT(1A) receptor agonist 8-OH-DPAT prompts a dose-dependent reduction in local cerebral blood volume (CBV) in brain areas rich in neurons expressing post-synaptic 5-HT(1A) receptor, including the prefrontal cortex, hippocampus and amygdalar nuclei. Region-specific inhibition of the response by co-injection of 8-OH-DPAT with the selective 5-HT(1A) receptor antagonist WAY-100635, or in 5-HT(1A) knock-out mice, suggests that 5-HT(1A) receptors are the primary targets of the agonist. Overall, the data demonstrate the feasibility of mapping region-specific serotonergic transmission in the adult mouse brain in vivo by non-invasive fMRI. The method opens novel perspectives for investigating 5-HT(1A) receptor functions in mouse models of human pathologies resulting from a dysfunction of the 5-HT(1A) receptor or the serotonergic system, including depression and anxiety.

Citations

9 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
04 Faculty of Medicine > Institute of Biomedical Engineering
04 Faculty of Medicine > Brain Research Institute
Dewey Decimal Classification:570 Life sciences; biology
170 Ethics
610 Medicine & health
Language:English
Date:2011
Deposited On:05 Jan 2011 08:43
Last Modified:05 Apr 2016 14:32
Publisher:Elsevier
ISSN:0924-977X
Publisher DOI:10.1016/j.euroneuro.2010.06.010
PubMed ID:20656461

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations