Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-41501

Schneider, A; Krauss, L; Moore, B (2010). Impact of dark matter microhalos on signatures for direct and indirect detection. Physical Review D, 82(6):063525.

Accepted Version
PDF (Accepted manuscript, Version 2)
Accepted Version
PDF (Accepted manuscript, Version 1)


Detecting dark matter as it streams through detectors on Earth relies on knowledge of its phase space density on a scale comparable to the size of our Solar System. Numerical simulations predict that our galactic halo contains an enormous hierarchy of substructures, streams and caustics, the remnants of the merging hierarchy that began with tiny Earth-mass microhalos. If these bound or coherent structures persist until the present time, they could dramatically alter signatures for the detection of weakly interacting elementary particle dark matter. Using numerical simulations that follow the coarse grained tidal disruption within the Galactic potential and fine grained heating from stellar encounters, we find that microhalos, streams, and caustics have a negligible likelihood of impacting direct detection signatures implying that dark matter constraints derived using simple smooth halo models are relatively robust. We also find that many dense central cusps survive, yielding a small enhancement in the signal for indirect detection experiments.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Theoretical Physics
DDC:530 Physics
Date:September 2010
Deposited On:01 Mar 2011 10:16
Last Modified:21 Apr 2014 13:51
Publisher:American Physical Society
Publisher DOI:10.1103/PhysRevD.82.063525
Related URLs:http://arxiv.org/abs/1004.5432
Citations:Web of Science®. Times Cited: 18
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page