Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-41737

Dubois, Y; Devriendt, J; Slyz, A; Teyssier, R (2010). Jet-regulated cooling catastrophe. Monthly Notices of the Royal Astronomical Society, 409(3):985-1001.

Accepted Version
PDF (Accepted manuscript, Version 3)
View at publisher
Accepted Version
PDF (Accepted manuscript, Version 2)
Accepted Version
PDF (Accepted manuscript, Version 1)


We present the first implementation of active galactic nuclei (AGN) feedback in the form of momentum-driven jets in an adaptive mesh refinement (AMR) cosmological resimulation of a galaxy cluster. The jets are powered by gas accretion on to supermassive black holes (SMBHs) which also grow by mergers. Throughout its formation, the cluster experiences different dynamical states: both a morphologically perturbed epoch at early times and a relaxed state at late times allowing us to study the different modes of black hole (BH) growth and associated AGN jet feedback. BHs accrete gas efficiently at high redshift (z > 2), significantly pre-heating proto-cluster haloes. Gas-rich mergers at high redshift also fuel strong, episodic jet activity, which transports gas from the proto-cluster core to its outer regions. At later times, while the cluster relaxes, the supply of cold gas on to the BHs is reduced leading to lower jet activity. Although the cluster is still heated by this activity as sound waves propagate from the core to the virial radius, the jets inefficiently redistribute gas outwards and a small cooling flow develops, along with low-pressure cavities similar to those detected in X-ray observations. Overall, our jet implementation of AGN feedback quenches star formation quite efficiently, reducing the stellar content of the central cluster galaxy by a factor of 3 compared to the no-AGN case. It also dramatically alters the shape of the gas density profile, bringing it in close agreement with the β model favoured by observations, producing quite an isothermal galaxy cluster for gigayears in the process. However, it still falls short in matching the lower than universal baryon fractions which seem to be commonplace in observed galaxy clusters.


58 citations in Web of Science®
55 citations in Scopus®
Google Scholar™



256 downloads since deposited on 02 Mar 2011
12 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Date:December 2010
Deposited On:02 Mar 2011 07:42
Last Modified:05 Apr 2016 14:33
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1111/j.1365-2966.2010.17338.x
Related URLs:http://arxiv.org/abs/1004.1851

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page