UZH-Logo

Maintenance Infos

Oral biofilm challenge regulates the RANKL-OPG system in periodontal ligament and dental pulp cells


Belibasakis, G N; Meier, A; Guggenheim, B; Bostanci, N (2011). Oral biofilm challenge regulates the RANKL-OPG system in periodontal ligament and dental pulp cells. Microbial Pathogenesis, 50(1):6-11.

Abstract

Inflammatory bone destruction triggered by oral bacteria is a hallmark of chronic and apical periodontitis. Receptor activator of NF-κB ligand (RANKL) activates bone resorption, whereas osteoprotegerin (OPG) blocks its action. These are members of the tumor necrosis factor ligand and receptor families, respectively. Although individual oral pathogens are known to regulate RANKL and OPG expression in cells of relevance to the respective diseases, such as periodontal ligament (PDL) and dental pulp (DP) cells, the effect of polymicrobial oral biofilms is not known. This study aimed to investigate the effect of the Zürich in vitro supragingival biofilm model on RANKL and OPG gene expression, in human PDL and DP cell cultures, by quantitative real-time polymerase chain reaction. RANKL expression was more pronouncedly up-regulated in DP than PDL cells (4-fold greater), whereas OPG was up-regulated to a similar extent. The RANKL/OPG ratio was increased only in DP cells, indicating an enhanced capacity for inducing bone resorption. The expression of pro-inflammatory cytokine interleukin-1β was also increased in DP, but not PDL cells. Collectively, the high responsiveness of DP, but not PDL cells to the supragingival biofilm challenge could constitute a putative pathogenic mechanism for apical periodontitis, which may not crucial for chronic periodontitis.

Abstract

Inflammatory bone destruction triggered by oral bacteria is a hallmark of chronic and apical periodontitis. Receptor activator of NF-κB ligand (RANKL) activates bone resorption, whereas osteoprotegerin (OPG) blocks its action. These are members of the tumor necrosis factor ligand and receptor families, respectively. Although individual oral pathogens are known to regulate RANKL and OPG expression in cells of relevance to the respective diseases, such as periodontal ligament (PDL) and dental pulp (DP) cells, the effect of polymicrobial oral biofilms is not known. This study aimed to investigate the effect of the Zürich in vitro supragingival biofilm model on RANKL and OPG gene expression, in human PDL and DP cell cultures, by quantitative real-time polymerase chain reaction. RANKL expression was more pronouncedly up-regulated in DP than PDL cells (4-fold greater), whereas OPG was up-regulated to a similar extent. The RANKL/OPG ratio was increased only in DP cells, indicating an enhanced capacity for inducing bone resorption. The expression of pro-inflammatory cytokine interleukin-1β was also increased in DP, but not PDL cells. Collectively, the high responsiveness of DP, but not PDL cells to the supragingival biofilm challenge could constitute a putative pathogenic mechanism for apical periodontitis, which may not crucial for chronic periodontitis.

Citations

26 citations in Web of Science®
28 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

175 downloads since deposited on 22 Jan 2011
30 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Institute of Oral Biology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:22 Jan 2011 18:20
Last Modified:05 Apr 2016 14:34
Publisher:Elsevier
ISSN:0882-4010
Publisher DOI:https://doi.org/10.1016/j.micpath.2010.11.002
PubMed ID:21075196

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations