Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-4217

Chen, D; Steele, A D; Hutter, G; Bruno, J; Govindarajan, A; Easlon, E; Lin, S J; Aguzzi, A; Lindquist, S; Guarente, L (2008). The role of calorie restriction and SIRT1 in prion-mediated neurodegeneration. Experimental Gerontology, 43(12):1086-1093.

Accepted Version
View at publisher


A central focus of aging research is to determine how calorie restriction (CR) extends lifespan and delays diseases of aging. SIRT1, the mammalian ortholog of Sir2 in yeast, is a longevity factor which mediates dietary restriction in diverse species. In addition, SIRT1 plays a protective role in several models of neurodegenerative disease. We tested the role of SIRT1 in mediating the effects of CR in a mouse model of prion disease. Prion diseases are protein misfolding disorders of the central nervous system with many similarities to other neurodegenerative diseases, including deposition of aggregated protein, gliosis, and loss of synapses and neurons. We report that the onset of prion disease is delayed by CR and in the SIRT1 KO mice fed ad libitum. CR exerts no further effect on the SIRT1 KO strain, suggesting the effects of CR and SIRT1 deletion are mechanistically coupled. In conjunction, SIRT1 is downregulated in certain brain regions of CR mice. The expression of PrP mRNA and protein is reduced in the brains of CR mice and in SIRT1 knockout mice, suggesting a possible mechanism for the delayed onset of disease, as PrP levels are a critical determinant of how quickly mice succumb to prion disease. Surprisingly, CR greatly shortens the duration of clinical symptoms of prion disease and ultimately shortens lifespan of prion-inoculated mice in a manner that is independent of SIRT1. Taken together, our results suggest a more complex interplay between CR, SIRT1, and neurodegenerative diseases than previously appreciated.


38 citations in Web of Science®
40 citations in Scopus®
Google Scholar™



124 downloads since deposited on 21 Oct 2008
45 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:30 August 2008
Deposited On:21 Oct 2008 07:40
Last Modified:05 Apr 2016 12:29
Publisher DOI:10.1016/j.exger.2008.08.050
PubMed ID:18799131

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page