UZH-Logo

Maintenance Infos

The impact of Pleistocene glaciation across the range of a widespread European coastal species


Wilson, Anthony B; Eigenmann Veraguth, Iris (2010). The impact of Pleistocene glaciation across the range of a widespread European coastal species. Molecular Ecology, 19(20):4535-4553.

Abstract

There is a growing consensus that much of the contemporary phylogeography of northern hemisphere coastal taxa reflects the impact of Pleistocene glaciation, when glaciers covered much of the coastline at higher latitudes and sea levels dropped by as much as 150 m. The genetic signature of postglacial recolonization has been detected in many marine species, but the effects of coastal glaciation are not ubiquitous, leading to suggestions that species may intrinsically differ in their ability to respond to the environmental change associated with glacial cycles. Such variation may indeed have a biological basis, but apparent differences in population structure among taxa may also stem from our heavy reliance on individual mitochondrial loci, which are strongly influenced by stochasticity during coalescence. We investigated the contemporary population genetics of Syngnathus typhle, one of the most widespread European coastal fish species, using a multilocus data set to investigate the influence of Pleistocene glaciation and reduced sea levels on its phylogeography. A strong signal of postglacial recolonization was detected at both the northern and eastern ends of the species' distribution, while southern populations appear to have been relatively unaffected by the last glacial cycle. Patterns of population variation and differentiation at nuclear and mitochondrial loci differ significantly, but simulations indicate that these differences can be explained by the stochastic nature of the coalescent process. These results demonstrate the strength of a multilocus approach to phylogeography and suggest that an overdependence on mitochondrial loci may provide a misleading picture of population-level processes.

Abstract

There is a growing consensus that much of the contemporary phylogeography of northern hemisphere coastal taxa reflects the impact of Pleistocene glaciation, when glaciers covered much of the coastline at higher latitudes and sea levels dropped by as much as 150 m. The genetic signature of postglacial recolonization has been detected in many marine species, but the effects of coastal glaciation are not ubiquitous, leading to suggestions that species may intrinsically differ in their ability to respond to the environmental change associated with glacial cycles. Such variation may indeed have a biological basis, but apparent differences in population structure among taxa may also stem from our heavy reliance on individual mitochondrial loci, which are strongly influenced by stochasticity during coalescence. We investigated the contemporary population genetics of Syngnathus typhle, one of the most widespread European coastal fish species, using a multilocus data set to investigate the influence of Pleistocene glaciation and reduced sea levels on its phylogeography. A strong signal of postglacial recolonization was detected at both the northern and eastern ends of the species' distribution, while southern populations appear to have been relatively unaffected by the last glacial cycle. Patterns of population variation and differentiation at nuclear and mitochondrial loci differ significantly, but simulations indicate that these differences can be explained by the stochastic nature of the coalescent process. These results demonstrate the strength of a multilocus approach to phylogeography and suggest that an overdependence on mitochondrial loci may provide a misleading picture of population-level processes.

Citations

35 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 20 Jan 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Uncontrolled Keywords:Bayesian analysis; coalescent simulation; molecular clock; multilocus phylogeography; pipefish; postglacial recolonization; Syngnathus typhle
Language:English
Date:October 2010
Deposited On:20 Jan 2011 15:58
Last Modified:05 Apr 2016 14:35
Publisher:Wiley-Blackwell
ISSN:0962-1083
Funders:Swiss Academy of Sciences ; Swiss National Science Foundation ; University of Zurich
Publisher DOI:https://doi.org/10.1111/j.1365-294X.2010.04811.x
Other Identification Number:ISI:000282635700015

Download

[img]
Filetype: PDF - Registered users only
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations