Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-42306

Mueller, T L; Wirth, A; van Lenthe, G H; Goldhahn, J; Schense, J; Jamieson, V; Messmer, P; Uebelhart, D; Weishaupt, D; Egermann, M; Müller, R (2011). Mechanical stability in a human radius fracture treated with a novel tissue-engineered bone substitute: a non-invasive, longitudinal assessment using high-resolution pQCT in combination with finite element analysis. Journal of Tissue Engineering and Regenerative Medicine, 5(5):415-420.

[img] PDF (Verlags-PDF) - Registered users only
View at publisher


The clinical gold standard in orthopaedics for treating fractures with large bone defects is still the use of autologous, cancellous bone autografts. While this material provides a strong healing response, the use of autografts is often associated with additional morbidity. Therefore, there is a demand for off-the-shelf biomaterials that perform similar to autografts. Biomechanical assessment of such a biomaterial in vivo has so far been limited. Recently, the development of high-resolution peripheral quantitative computed tomography (HR-pQCT) has made it possible to measure bone structure in humans in great detail. Finite element analysis (FEA) has been used to accurately estimate bone mechanical function from three-dimensional CT images. The aim of this study was therefore to determine the feasibility of these two methods in combination, to quantify bone healing in a clinical case with a fracture at the distal radius which was treated with a new bone graft substitute. Validation was sought through a conceptional ovine model. The bones were scanned using HR-pQCT and subsequently biomechanically tested. FEA-derived stiffness was validated relative to the experimental data. The developed processing methods were then adapted and applied to in vivo follow-up data of the patient. Our analyses indicated an 18% increase of bone stiffness within 2 months. To our knowledge, this was the first time that microstructural finite element analyses have been performed on bone-implant constructs in a clinical setting. From this clinical case study, we conclude that HR-pQCT-based micro-finite element analyses show high potential to quantify bone healing in patients. Copyright © 2010 John Wiley & Sons, Ltd.


4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™



2 downloads since deposited on 20 Jan 2011
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
Dewey Decimal Classification:610 Medicine & health
Deposited On:20 Jan 2011 08:25
Last Modified:05 Apr 2016 14:35
Publisher DOI:10.1002/term.325
PubMed ID:20827669

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page