Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Hoffmann, Matej; Oses, Noelia; Koene, Randal A (2010). Embodied moving-target seeking with prediction and planning. Lecture Notes in Computer Science, 6077:478-485.

Full text not available from this repository.

View at publisher

Abstract

We present a bio-inspired control method for moving-target seeking with a mobile robot, which resembles a predator-prey scenario. The motor repertoire of a simulated Khepera robot was restricted to a discrete number of "gaits". After an exploration phase, the robot automatically synthesizes a model of its motor repertoire, acquiring a forward model. Two additional components were introduced for the task of catching a prey robot. First, an inverse model to the forward model, which is used to determine the action (gait) needed to reach a desired location. Second, while hunting the prey, a model of the prey's behavior is learned online by the hunter robot. All the models are learned ab initio, without assumptions, work in egocentric coordinates, and are probabilistic in nature. Our architecture can be applied to robots with any physical constraints (or embodiment), such as legged robots.

Citations

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
DDC:000 Computer science, knowledge & systems
Language:English
Date:25 June 2010
Deposited On:12 Feb 2011 08:24
Last Modified:23 Nov 2012 13:09
Publisher:Springer
ISSN:0302-9743
Publisher DOI:10.1007/978-3-642-13803-4_59

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page