Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-4246

Raynaud, C; Papavinasasundaram, K G; Speight, R A; Springer, B; Sander, P; Böttger, E C; Colston, M J; Draper, P (2002). The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Molecular Microbiology, 46(1):191-201.

[img] PDF - Registered users only
View at publisher


The functions of OmpATb, the product of the ompATb gene of Mycobacterium tuberculosis and a putative porin, were investigated by studying a mutant with a targeted deletion of the gene, and by observing expression of the gene in wild-type M. tuberculosis H37Rv by real-time polymerase chain reaction (PCR) and immunoblotting. The loss of ompATb had no effect on growth under normal conditions, but caused a major reduction in ability to grow at reduced pH. The gene was substantially upregulated in wild-type bacteria exposed to these conditions. The mutant was impaired in its ability to grow in macrophages and in normal mice, although it was as virulent as the wild type in mice that lack T cells. Deletion of the ompATb gene reduced permeability to several small water-soluble substances. This was particularly evident at pH 5.5; at this pH, uptake of serine was minimal, suggesting that, at this pH, OmpATb might be the only functioning porin. These data indicate that OmpATb has two functions: as a pore-forming protein with properties of a porin, and in enabling M. tuberculosis to respond to reduced environmental pH. It is not known whether this second function is related to the porin-like activity at low pH or involves a completely separate role for OmpATB. The involvement with pH is likely to contribute to the ability of M. tuberculosis to overcome host defence mechanisms and grow in a mammalian host.


55 citations in Web of Science®
56 citations in Scopus®
Google Scholar™



0 downloads since deposited on 26 Mar 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Deposited On:26 Mar 2009 13:28
Last Modified:05 Apr 2016 12:29
Publisher DOI:10.1046/j.1365-2958.2002.03152.x
PubMed ID:12366842

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page