UZH-Logo

Maintenance Infos

Cost-effectiveness of plant and animal biodiversity indicators in tropical forest and agroforest habitats


Kessler, M; Abrahamczyk, S; et al (2011). Cost-effectiveness of plant and animal biodiversity indicators in tropical forest and agroforest habitats. Journal of Applied Ecology, 48(1):133-142.

Abstract

1. Biodiversity data are needed for conservation and management of tropical habitats, but the high diversity of these ecosystems makes comprehensive surveys prohibitively expensive and indicator taxa reflecting the biodiversity patterns of other taxa are frequently used. Few studies have produced the necessary comprehensive data sets to assess the quality of the indicator groups, however, and only one previous study has considered the monetary costs involved in sampling them.

2. We surveyed four plant groups (herbs, liverworts, trees, lianas) and eight animal groups (ants, canopy and dung beetles, birds, butterflies, bees, wasps and the parasitoids of the latter two) in 15 plots of 50 × 50 m2 each, representing undisturbed rainforest and two types of cacao agroforest in Sulawesi, Indonesia. We calculated three biodiversity measures (α and β diversity; percentage of species indicative of habitat conditions), built simple and multiple regression models among species groups (single groups, combinations of 2–11 groups, averaged relative diversity of all 12 groups), and related these to three measures of survey cost (absolute costs and two approaches correcting for different sampling intensities).

3. Determination coefficients (R2 values) of diversity patterns between single study groups were generally low (<0·25), while the consideration of several study groups increased R2 values to up to 0·8 for combinations of four groups, and to almost 1·0 for combinations of 11 groups. Survey costs varied 10-fold between study groups, but their cost-effectiveness (indicator potential versus monetary cost) varied strongly depending on the biodiversity aspect taken into account (α or β diversity, single or multiple groups, etc.).

4. Synthesis and applications. We found that increasing the number of taxa resulted in best overall biodiversity indication. We thus propose that the most cost-efficient approach to general tropical biodiversity inventories is to increase taxonomic coverage by selecting taxa with the lowest survey costs.

Abstract

1. Biodiversity data are needed for conservation and management of tropical habitats, but the high diversity of these ecosystems makes comprehensive surveys prohibitively expensive and indicator taxa reflecting the biodiversity patterns of other taxa are frequently used. Few studies have produced the necessary comprehensive data sets to assess the quality of the indicator groups, however, and only one previous study has considered the monetary costs involved in sampling them.

2. We surveyed four plant groups (herbs, liverworts, trees, lianas) and eight animal groups (ants, canopy and dung beetles, birds, butterflies, bees, wasps and the parasitoids of the latter two) in 15 plots of 50 × 50 m2 each, representing undisturbed rainforest and two types of cacao agroforest in Sulawesi, Indonesia. We calculated three biodiversity measures (α and β diversity; percentage of species indicative of habitat conditions), built simple and multiple regression models among species groups (single groups, combinations of 2–11 groups, averaged relative diversity of all 12 groups), and related these to three measures of survey cost (absolute costs and two approaches correcting for different sampling intensities).

3. Determination coefficients (R2 values) of diversity patterns between single study groups were generally low (<0·25), while the consideration of several study groups increased R2 values to up to 0·8 for combinations of four groups, and to almost 1·0 for combinations of 11 groups. Survey costs varied 10-fold between study groups, but their cost-effectiveness (indicator potential versus monetary cost) varied strongly depending on the biodiversity aspect taken into account (α or β diversity, single or multiple groups, etc.).

4. Synthesis and applications. We found that increasing the number of taxa resulted in best overall biodiversity indication. We thus propose that the most cost-efficient approach to general tropical biodiversity inventories is to increase taxonomic coverage by selecting taxa with the lowest survey costs.

Citations

20 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 23 Jan 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Systematic Botany and Botanical Gardens
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2011
Deposited On:23 Jan 2011 17:09
Last Modified:05 Apr 2016 14:36
Publisher:Wiley-Blackwell
ISSN:0021-8901
Publisher DOI:https://doi.org/10.1111/j.1365-2664.2010.01932.x

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations