UZH-Logo

Maintenance Infos

Anti-Mullerian-hormone-dependent regulation of the brain serine-protease inhibitor neuroserpin


Lebeurrier, N; Launay, S; Macrez, R; Maubert, E; Legros, H; Leclerc, A; Jamin, S P; Picard, J Y; Marret, S; Laudenbach, V; Berger, P; Sonderegger, P; Ali, C; di Clemente, N; Vivien, D (2008). Anti-Mullerian-hormone-dependent regulation of the brain serine-protease inhibitor neuroserpin. Journal of Cell Science, 121(20):3357-3365.

Abstract

The balance between tissue-type plasminogen activator (tPA) and one of its inhibitors, neuroserpin, has crucial roles in the central nervous system, including the control of neuronal migration, neuronal plasticity and neuronal death. In the present study, we demonstrate that the activation of the transforming growth factor-beta (TGFbeta)-related BMPR-IB (also known as BMPR1B and Alk6)- and Smad5-dependent signalling pathways controls neuroserpin transcription. Accordingly, we demonstrate for the first time that anti-Mullerian hormone (AMH), a member of the TGFbeta family, promotes the expression of neuroserpin in cultured neurons but not in astrocytes. The relevance of these findings is confirmed by the presence of both AMH and AMH type-II receptor (AMHR-II) in brain tissues, and is supported by the observation of reduced levels of neuroserpin in the brain of AMHR-II-deficient mice. Interestingly, as previously demonstrated for neuroserpin, AMH protects neurons against N-methyl-D-aspartate (NMDA)-mediated excitotoxicity both in vitro and in vivo. This study demonstrates the existence of an AMH-dependent signalling pathway in the brain leading to an overexpression of the serine-protease inhibitor, neuroserpin, and neuronal survival.

Abstract

The balance between tissue-type plasminogen activator (tPA) and one of its inhibitors, neuroserpin, has crucial roles in the central nervous system, including the control of neuronal migration, neuronal plasticity and neuronal death. In the present study, we demonstrate that the activation of the transforming growth factor-beta (TGFbeta)-related BMPR-IB (also known as BMPR1B and Alk6)- and Smad5-dependent signalling pathways controls neuroserpin transcription. Accordingly, we demonstrate for the first time that anti-Mullerian hormone (AMH), a member of the TGFbeta family, promotes the expression of neuroserpin in cultured neurons but not in astrocytes. The relevance of these findings is confirmed by the presence of both AMH and AMH type-II receptor (AMHR-II) in brain tissues, and is supported by the observation of reduced levels of neuroserpin in the brain of AMHR-II-deficient mice. Interestingly, as previously demonstrated for neuroserpin, AMH protects neurons against N-methyl-D-aspartate (NMDA)-mediated excitotoxicity both in vitro and in vivo. This study demonstrates the existence of an AMH-dependent signalling pathway in the brain leading to an overexpression of the serine-protease inhibitor, neuroserpin, and neuronal survival.

Citations

21 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

73 downloads since deposited on 24 Oct 2008
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:16 September 2008
Deposited On:24 Oct 2008 12:29
Last Modified:05 Apr 2016 12:29
Publisher:Company of Biologists
ISSN:0021-9533
Additional Information:Free full text article
Publisher DOI:https://doi.org/10.1242/jcs.031872
Official URL:http://jcs.biologists.org/cgi/reprint/121/20/3357
PubMed ID:18796535

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations