Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-42969

Ehses, J A; Meier, D T; Wueest, S; Rytka, J; Boller, S; Wielinga, P Y; Schraenen, A; Lemaire, K; Debray, S; Van Lommel, L; Pospisilik, J A; Tschopp, O; Schultze, S M; Malipiero, U; Esterbauer, H; Ellingsgaard, H; Rütti, S; Schuit, F C; Lutz, T A; Böni-Schnetzler, M; Konrad, D; Donath, M Y (2010). Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet. Diabetologia, 53(8):1795-1806.

[img] PDF (Verlags-PDF) - Registered users only
View at publisher


AIMS/HYPOTHESIS: Inflammation contributes to both insulin resistance and pancreatic beta cell failure in human type 2 diabetes. Toll-like receptors (TLRs) are highly conserved pattern recognition receptors that coordinate the innate inflammatory response to numerous substances, including NEFAs. Here we investigated a potential contribution of TLR2 to the metabolic dysregulation induced by high-fat diet (HFD) feeding in mice.

METHODS: Male and female littermate Tlr2(+/+) and Tlr2(-/-) mice were analysed with respect to glucose tolerance, insulin sensitivity, insulin secretion and energy metabolism on chow and HFD. Adipose, liver, muscle and islet pathology and inflammation were examined using molecular approaches. Macrophages and dendritic immune cells, in addition to pancreatic islets were investigated in vitro with respect to NEFA-induced cytokine production.

RESULTS: While not showing any differences in glucose homeostasis on chow diet, both male and female Tlr2(-/-) mice were protected from the adverse effects of HFD compared with Tlr2(+/+) littermate controls. Female Tlr2(-/-) mice showed pronounced improvements in glucose tolerance, insulin sensitivity, and insulin secretion following 20 weeks of HFD feeding. These effects were associated with an increased capacity of Tlr2(-/-) mice to preferentially burn fat, combined with reduced tissue inflammation. Bone-marrow-derived dendritic cells and pancreatic islets from Tlr2(-/-) mice did not increase IL-1beta expression in response to a NEFA mixture, whereas Tlr2(+/+) control tissues did.

CONCLUSION/INTERPRETATION: These data suggest that TLR2 is a molecular link between increased dietary lipid intake and the regulation of glucose homeostasis, via regulation of energy substrate utilisation and tissue inflammation.


93 citations in Web of Science®
95 citations in Scopus®
Google Scholar™



2 downloads since deposited on 21 Jan 2011
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Immunology
04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Endocrinology and Diabetology
Special Collections > SystemsX.ch
Special Collections > SystemsX.ch > Research, Technology and Development Projects > LiverX
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Deposited On:21 Jan 2011 17:30
Last Modified:05 Apr 2016 14:37
Publisher DOI:10.1007/s00125-010-1747-3
PubMed ID:20407745

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page