UZH-Logo

Electrochemistry on a localized surface plasmon resonance sensor


Sannomiya, T; Dermutz, H; Hafner, C; Vörös, J; Dahlin, A B (2010). Electrochemistry on a localized surface plasmon resonance sensor. Langmuir, 26(10):7619-7626.

Abstract

The optical signal of a localized surface plasmon resonance (LSPR)-based sensor combined with electrochemistry was investigated. Gold nanoparticles were immobilized on an indium tin oxide (ITO) substrate, which functioned as working electrode. Using cyclic voltammetry synchronized with LSPR sensing, surface reactions on gold were detected both electrically and optically. In the capacitive charging regime, optical signals linear to the applied potential were detected. Gold was found to be dissolved above the oxidation potential and partially redeposited during the reduction, which changed size and conformation of the gold nanoparticles. In kinetic measurements, slower potential establishment was observed at lower salt concentrations. Simulations by multiple multipole program (MMP) suggested the formation of a lossy layer by combination of charge depletion of gold and negative ion adsorption even below the reaction potential. We consider the results presented here of importance for any future sensors based on combined plasmonics and electrochemistry.

The optical signal of a localized surface plasmon resonance (LSPR)-based sensor combined with electrochemistry was investigated. Gold nanoparticles were immobilized on an indium tin oxide (ITO) substrate, which functioned as working electrode. Using cyclic voltammetry synchronized with LSPR sensing, surface reactions on gold were detected both electrically and optically. In the capacitive charging regime, optical signals linear to the applied potential were detected. Gold was found to be dissolved above the oxidation potential and partially redeposited during the reduction, which changed size and conformation of the gold nanoparticles. In kinetic measurements, slower potential establishment was observed at lower salt concentrations. Simulations by multiple multipole program (MMP) suggested the formation of a lossy layer by combination of charge depletion of gold and negative ion adsorption even below the reaction potential. We consider the results presented here of importance for any future sensors based on combined plasmonics and electrochemistry.

Citations

26 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 26 Jan 2011
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2010
Deposited On:26 Jan 2011 14:36
Last Modified:05 Apr 2016 14:39
Publisher:American Chemical Society
ISSN:0743-7463
Free access at:Related URL. An embargo period may apply.
Publisher DOI:10.1021/la9042342
Related URLs:http://pubs.acs.org/doi/abs/10.1021/la9042342 (Publisher)
PubMed ID:20020724
Permanent URL: http://doi.org/10.5167/uzh-43550

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations