Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-43762

Zini, E; Osto, M; Konrad, D; Franchini, M; Sieber-Ruckstuhl, N S; Kaufmann, K; Guscetti, F; Ackermann, M; Lutz, T A; Reusch, C E (2010). 10-day hyperlipidemic clamp in cats: effects on insulin sensitivity, inflammation, and glucose metabolism-related genes. Hormone and Metabolic Research = Hormon- und Stoffwechselforschung = Hormones et métabolisme, 42(5):340-347.

[img] PDF - Registered users only
View at publisher
Accepted Version


Obesity and hyperlipidemia are associated with impaired insulin sensitivity in human type 2 diabetes mellitus, possibly due to activation of a mild inflammatory response. Because obesity-induced insulin resistance predisposes cats to diabetes and because hyperlipidemia is a frequent concurrent finding, excess lipids may also impair insulin sensitivity in cats. Healthy cats (n=6) were infused with lipids (Lipovenoes 10%) for 10 days to clamp blood triglycerides at the approximate concentration of untreated feline diabetes (3-7 mmol/l). Controls received saline (n=5). On day 10, plasma adiponectin and proinflammatory markers were measured. Whole-body insulin sensitivity was calculated following an intravenous glucose tolerance test. Tissue mRNAs of glucose metabolism-related genes were quantified in subcutaneous and visceral fat, liver, and skeletal muscles. Accumulation of lipids was assessed in liver. At the termination of infusion, whole-body insulin sensitivity did not differ between groups. Compared to saline, cats infused with lipids had 50% higher plasma adiponectin and 2-3 times higher alpha(1)-acid glycoprotein and monocyte chemoattractant protein-1. Unexpectedly, lipid-infused cats had increased glucose transporter-4 (GLUT4) mRNA in the visceral fat, and increased peroxisome proliferative activated receptor-gamma2 (PPARgamma2) in subcutaneous fat; adiponectin expression was not affected in any tissue. Lipid-infused cats developed hepatic steatosis. Although hyperlipidemia induced systemic inflammation, whole-body insulin sensitivity was not impaired after 10 day infusion. Increased circulating adiponectin may have contributed to prevent insulin resistance, possibly by increasing GLUT4 and PPARgamma2 transcripts in fat depots.


6 citations in Web of Science®
7 citations in Scopus®
Google Scholar™



37 downloads since deposited on 27 Jan 2011
4 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
05 Vetsuisse Faculty > Institute of Veterinary Physiology
05 Vetsuisse Faculty > Institute of Veterinary Pathology
05 Vetsuisse Faculty > Institute of Virology
05 Vetsuisse Faculty > Veterinary Clinic > Department of Small Animals
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Deposited On:27 Jan 2011 15:40
Last Modified:05 Apr 2016 14:40
Publisher DOI:10.1055/s-0030-1248251
PubMed ID:20162504

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page