UZH-Logo

Maintenance Infos

Tensile and shear loading stability of all-inside meniscal repairs: an in vitro biomechanical evaluation


Brucker, P U; Favre, P; Puskas, G J; von Campe, A; Meyer, D C; Koch, P P (2010). Tensile and shear loading stability of all-inside meniscal repairs: an in vitro biomechanical evaluation. American Journal of Sports Medicine, 38(9):1838-1844.

Abstract

BACKGROUND: Most biomechanical studies for evaluation of the structural properties of meniscal repairs have been performed in tensile loading scenarios perpendicular to the circumferential meniscal fibers. However, meniscal repair constructs are also exposed to shear forces parallel to the circumferential meniscal fibers during healing, particularly in the midportion of the meniscus.
HYPOTHESIS: Material properties of meniscal repair devices cannot be extrapolated from tensile to shear load scenarios.
STUDY DESIGN: Controlled laboratory study.
METHODS: In 84 harvested and isolated bovine lateral menisci following removal of adjacent soft tissue, a standardized vertical lesion was set followed by repair using all-inside flexible (FasT-Fix, FasT-Fix AB, RapidLoc) and rigid (Meniscus Screw, Meniscus Arrow) meniscal repair devices. Vertical and horizontal 2.0 Ethibond sutures were used as controls. The repaired meniscal construct was tested in a tensile (parallel to the axis of the tested repair device) and shear load scenario (perpendicular to the axis of the tested repair device) at 5 mm/min and 37 degrees C environmental temperature. Maximum load to failure, stiffness, and failure mode were recorded.
RESULTS: The absolute load to failure values of each repair device in the shear scenario were only marginally different from the tensile load scenario. However, the stiffness of several tested devices was markedly reduced in the shear scenario. In both scenarios, large differences of the load to failure and the stiffness between the implant types up to 5-fold were found (P < .05). The failure mode of several all-inside flexible repair devices was different in the shear versus tensile load scenario, while the failure mode of the rigid systems was similar in both scenarios.
CONCLUSION: All-inside meniscal repair devices exposed to shear load scenarios have comparable maximum loads to failures as tensile load scenarios. However, the stiffness of the majority of the flexible meniscal repair implants in a shear load scenario is markedly reduced. The applied scenario also affects the failure mode in several flexible meniscal repair devices.
CLINICAL RELEVANCE: Meniscal repair devices with sufficient stiffness and stability against shear loads may be favored for meniscal repair, especially within the midportion of the meniscus where shear loads occur during healing.

Abstract

BACKGROUND: Most biomechanical studies for evaluation of the structural properties of meniscal repairs have been performed in tensile loading scenarios perpendicular to the circumferential meniscal fibers. However, meniscal repair constructs are also exposed to shear forces parallel to the circumferential meniscal fibers during healing, particularly in the midportion of the meniscus.
HYPOTHESIS: Material properties of meniscal repair devices cannot be extrapolated from tensile to shear load scenarios.
STUDY DESIGN: Controlled laboratory study.
METHODS: In 84 harvested and isolated bovine lateral menisci following removal of adjacent soft tissue, a standardized vertical lesion was set followed by repair using all-inside flexible (FasT-Fix, FasT-Fix AB, RapidLoc) and rigid (Meniscus Screw, Meniscus Arrow) meniscal repair devices. Vertical and horizontal 2.0 Ethibond sutures were used as controls. The repaired meniscal construct was tested in a tensile (parallel to the axis of the tested repair device) and shear load scenario (perpendicular to the axis of the tested repair device) at 5 mm/min and 37 degrees C environmental temperature. Maximum load to failure, stiffness, and failure mode were recorded.
RESULTS: The absolute load to failure values of each repair device in the shear scenario were only marginally different from the tensile load scenario. However, the stiffness of several tested devices was markedly reduced in the shear scenario. In both scenarios, large differences of the load to failure and the stiffness between the implant types up to 5-fold were found (P < .05). The failure mode of several all-inside flexible repair devices was different in the shear versus tensile load scenario, while the failure mode of the rigid systems was similar in both scenarios.
CONCLUSION: All-inside meniscal repair devices exposed to shear load scenarios have comparable maximum loads to failures as tensile load scenarios. However, the stiffness of the majority of the flexible meniscal repair implants in a shear load scenario is markedly reduced. The applied scenario also affects the failure mode in several flexible meniscal repair devices.
CLINICAL RELEVANCE: Meniscal repair devices with sufficient stiffness and stability against shear loads may be favored for meniscal repair, especially within the midportion of the meniscus where shear loads occur during healing.

Citations

12 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

43 downloads since deposited on 07 Feb 2011
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2010
Deposited On:07 Feb 2011 13:20
Last Modified:05 Apr 2016 14:41
Publisher:Sage Publications
ISSN:0363-5465
Publisher DOI:https://doi.org/10.1177/0363546510368131
PubMed ID:20805413

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 697kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations