Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-44285

Ortmann, J; Veit, M; Zingg, S; Santo, S D; Traupe, T; Yang, Z; Völzmann, J; Dubey, R K; Christen, S (2011). Estrogen Receptor-{alpha} But Not -β or GPER Inhibits High Glucose-Induced Human VSMC Proliferation: Potential Role of ROS and ERK. Journal of Clinical Endocrinology and Metabolism, 96(1):220-228.

[img] PDF - Registered users only
View at publisher


CONTEXT: The decreased incidence of cardiovascular disease in premenopausal women has been attributed, at least partially, to protective effects of estrogens. However, premenopausal women with diabetes mellitus are no longer selectively protected. High-glucose (HG) conditions have previously been shown to abolish the antimitogenic effects of 17β-estradiol (E(2)) in vascular smooth muscle cells (VSMCs).

OBJECTIVE: Because E(2) mediates its action via different estrogen receptor (ER) subtypes, we hypothesized that different subtypes may have different, if not opposing, effects on HG-induced VSMC proliferation.

METHODS AND RESULTS: Treatment of human aortic VSMCs isolated from premenopausal women with the selective ERα agonist, 4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol, but not with E(2), the selective ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile, or the selective G protein-coupled ER agonist G-1 completely prevented increased HG-induced VSMC proliferation. Under these conditions, ERα activation selectively prevented increased hydrogen peroxide (H(2)O(2)) and total intracellular reactive oxygen species (ROS) production, caused up-regulation of manganese superoxide dismutase protein and activity, and inhibited prolonged ERK phosphorylation. The latter was mediated by ROS, and ROS inhibition reversed HG-induced ERK-dependent VSMC proliferation. The selective coactivation of ERβ reversed the antimitogenic and antioxidative effects of ERα as well as the up-regulation of manganese superoxide dismutase protein expression.

CONCLUSION: Selective activation of ERα is required for reducing oxidative stress and the consequent hyperproliferation of VSMCs under HG. Our results may further suggest that ERα activation inhibits HG-induced proliferation by down-regulating ROS-mediated ERK activation and may explain why antimitogenic effects of E(2) are abolished under HG. Pharmacological activation of ERα may thus have therapeutic potential for treating cardiovascular dysregulation associated with diabetes.


25 citations in Web of Science®
26 citations in Scopus®
Google Scholar™



5 downloads since deposited on 08 Feb 2011
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Reproductive Endocrinology
Dewey Decimal Classification:610 Medicine & health
Deposited On:08 Feb 2011 10:04
Last Modified:05 Apr 2016 14:42
Publisher:Endocrine Society
Publisher DOI:10.1210/jc.2010-0943
PubMed ID:20962025

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page