UZH-Logo

Maintenance Infos

Multifunctionality and robustness trade-offs in model genetic circuits


Martin, O C; Wagner, A (2008). Multifunctionality and robustness trade-offs in model genetic circuits. Biophysical Journal, 94(8):2927-2937.

Abstract

Most cellular systems, from macromolecules to genetic networks, have more than one function. Examples involving networks include the transcriptional regulation circuits formed by Hox genes and the Drosophila segmentation genes, which function in both early and later developmental events. Does the need to carry out more than one function severely constrain network architecture? Does it imply robustness trade-offs among functions? That is, if one function is highly robust to mutations, are other functions highly sensitive, and vice versa? Little available evidence speaks to these questions. We address them with a general model of transcriptional regulation networks. We show that requiring a regulatory network to carry out additional functions constrains the number of permissible network architectures exponentially. However, robustness of one function to regulatory mutations is uncorrelated or weakly positively correlated to robustness of other functions. This means that robustness trade-offs generally do not arise in the systems we study. As long as there are many alternative network structures, each of which can fulfill all required functions, multiple functions may acquire high robustness through gradual Darwinian evolution.

Most cellular systems, from macromolecules to genetic networks, have more than one function. Examples involving networks include the transcriptional regulation circuits formed by Hox genes and the Drosophila segmentation genes, which function in both early and later developmental events. Does the need to carry out more than one function severely constrain network architecture? Does it imply robustness trade-offs among functions? That is, if one function is highly robust to mutations, are other functions highly sensitive, and vice versa? Little available evidence speaks to these questions. We address them with a general model of transcriptional regulation networks. We show that requiring a regulatory network to carry out additional functions constrains the number of permissible network architectures exponentially. However, robustness of one function to regulatory mutations is uncorrelated or weakly positively correlated to robustness of other functions. This means that robustness trade-offs generally do not arise in the systems we study. As long as there are many alternative network structures, each of which can fulfill all required functions, multiple functions may acquire high robustness through gradual Darwinian evolution.

Citations

17 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

105 downloads since deposited on 24 Oct 2008
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:April 2008
Deposited On:24 Oct 2008 13:05
Last Modified:05 Apr 2016 12:30
Publisher:Biophysical Society
ISSN:0006-3495
Publisher DOI:10.1529/biophysj.107.114348
Related URLs:http://www.biophysj.org/
PubMed ID:18367655
Permanent URL: http://doi.org/10.5167/uzh-4456

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 10MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations