UZH-Logo

Maintenance Infos

Methyl- and acetyltransferases are stable epigenetic markers postmortem


Monoranu, C M; Grünblatt, E; Bartl, J; Meyer, A; Apfelbacher, M; Keller, D; Michel, T M; Al-Saraj, S; Schmitt, A; Falkai, P; Roggendorf, W; Deckert, J; Ferrer, I; Riederer, P (2011). Methyl- and acetyltransferases are stable epigenetic markers postmortem. Cell and Tissue Banking, 12(4):289-297.

Abstract

Postmortem brain tissue has been reported to be suitable to delineate regional pattern of possible disturbances underlying epigenetic functionality. However, from many parameters that have been detected in postmortem brain regions it is noteworthy that an effect of postmortem interval (PMI), storage time and premortem parameters should not be underestimated. Our previous investigation revealed that tryptophan (TRP) levels in postmortem brain tissue is affected by PMI and storage time. Since, alteration in TRP levels are assumed to be due to protein degradation, we further investigated whether TRP correlates to variables such as RNA, proteins and DNA modulators. In addition, we aimed to elucidate whether established postmortem variables may influence epigenetic parameters. These were investigated in well characterized postmortem human brain tissue originating from the European Brain Bank consortium II (BNEII). We could confirm previous findings, in which some protein levels alter because of prolonged PMI. Similarly, we demonstrated an influence of increased storage period on TRP levels, which might indicate degradation of proteins. Still not all proteins degrade in a similar manner, therefore a specific analysis for the protein of interest would be recommended. We found that methyltransferase- and acetyltransferase-activities were relatively preserved with PMI and storage duration. In conclusion, preservation of acetyltransferase- and methyltransferase-activities provides possible evidence of stability for epigenetic studies using postmortem tissue.

Postmortem brain tissue has been reported to be suitable to delineate regional pattern of possible disturbances underlying epigenetic functionality. However, from many parameters that have been detected in postmortem brain regions it is noteworthy that an effect of postmortem interval (PMI), storage time and premortem parameters should not be underestimated. Our previous investigation revealed that tryptophan (TRP) levels in postmortem brain tissue is affected by PMI and storage time. Since, alteration in TRP levels are assumed to be due to protein degradation, we further investigated whether TRP correlates to variables such as RNA, proteins and DNA modulators. In addition, we aimed to elucidate whether established postmortem variables may influence epigenetic parameters. These were investigated in well characterized postmortem human brain tissue originating from the European Brain Bank consortium II (BNEII). We could confirm previous findings, in which some protein levels alter because of prolonged PMI. Similarly, we demonstrated an influence of increased storage period on TRP levels, which might indicate degradation of proteins. Still not all proteins degrade in a similar manner, therefore a specific analysis for the protein of interest would be recommended. We found that methyltransferase- and acetyltransferase-activities were relatively preserved with PMI and storage duration. In conclusion, preservation of acetyltransferase- and methyltransferase-activities provides possible evidence of stability for epigenetic studies using postmortem tissue.

Citations

3 citations in Web of Science®
5 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 04 Feb 2011
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Child and Adolescent Psychiatry
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:04 Feb 2011 16:13
Last Modified:05 Apr 2016 14:43
Publisher:Springer
ISSN:1389-9333
Publisher DOI:https://doi.org/10.1007/s10561-010-9199-z
PubMed ID:20652834
Permanent URL: https://doi.org/10.5167/uzh-44574

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations