UZH-Logo

Diabetes type II: a risk factor for depression-Parkinson-Alzheimer?


Riederer, P; Bartl, J; Laux, G; Grünblatt, E (2011). Diabetes type II: a risk factor for depression-Parkinson-Alzheimer? Neurotoxicity Research, 19(2):253-265.

Abstract

There is ample evidence that impairments in the hypothalamic-pituitary-adrenal (HPA) axis are of etiopathobiochemical importance in a subgroup of patients with "depression", causing hypercortisolaemia as major metabolic effect. Chronic hypercortisolaemia causes insulin resistance. Therefore, it is not surprising that epidemiological studies demonstrate an association of "depression" with diabetes type II and vice versa. Chronic stress and hypercortisolaemia are conditions, which have been suggested to be causal for Alzheimer's disease (AD) as brain insulin resistance is associated with β-Amyloid-accumulation and hyperphosphorylation of tau-protein. Depression is one of the significant symptomatology preceding AD. It is however, not known whether "depression" associated with hypercortisolaemia is the subgroup at risk for AD. In contrast to a subgroup of "depression" and to AD, in Parkinson's disease (PD) there is only weak evidence for an association with diabetes type II and insulin resistance. As "depression" is preceding PD in up to half of such patients, it remains to be elucidated whether this is a subgroup of depressed patients, which is not associated with disturbances of the HPA axis and hypercortisolaemia. Improved clinical and biochemical/molecular knowledge about "depression" associated with AD and PD in comparison to "pure" depression might lead to improved therapeutic strategies and even drug development focusing subtypes of "depression".

There is ample evidence that impairments in the hypothalamic-pituitary-adrenal (HPA) axis are of etiopathobiochemical importance in a subgroup of patients with "depression", causing hypercortisolaemia as major metabolic effect. Chronic hypercortisolaemia causes insulin resistance. Therefore, it is not surprising that epidemiological studies demonstrate an association of "depression" with diabetes type II and vice versa. Chronic stress and hypercortisolaemia are conditions, which have been suggested to be causal for Alzheimer's disease (AD) as brain insulin resistance is associated with β-Amyloid-accumulation and hyperphosphorylation of tau-protein. Depression is one of the significant symptomatology preceding AD. It is however, not known whether "depression" associated with hypercortisolaemia is the subgroup at risk for AD. In contrast to a subgroup of "depression" and to AD, in Parkinson's disease (PD) there is only weak evidence for an association with diabetes type II and insulin resistance. As "depression" is preceding PD in up to half of such patients, it remains to be elucidated whether this is a subgroup of depressed patients, which is not associated with disturbances of the HPA axis and hypercortisolaemia. Improved clinical and biochemical/molecular knowledge about "depression" associated with AD and PD in comparison to "pure" depression might lead to improved therapeutic strategies and even drug development focusing subtypes of "depression".

Citations

21 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > Center for Child and Adolescent Psychiatry
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:15 June 2011
Deposited On:04 Feb 2011 15:48
Last Modified:05 Apr 2016 14:43
Publisher:Springer
ISSN:1029-8428
Publisher DOI:10.1007/s12640-010-9203-1
PubMed ID:20552313

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations