UZH-Logo

Maintenance Infos

Nanoleakage inhibition within hybrid layer using new protective chemicals and their effect on adhesion


Dündar, M; Özcan, Mutlu; Cömlekoglu, M E; Sen, B H (2011). Nanoleakage inhibition within hybrid layer using new protective chemicals and their effect on adhesion. Journal of Dental Research, 90(1):93-98.

Abstract

Hybrid-layer degradation occurs because of acidic properties of currently used adhesive systems. Titanium tetrafluoride couples with tooth surface, and titanium compounds are not substituted. Caffeic acid phenethyl esther inhibits endogenous matrix metalloproteinases that cause hybrid-layer degradation. It was hypothesized that titanium tetrafluoride and caffeic acid phenethyl esther application on exposed dentine surfaces before adhesive applications would inhibit nanoleakage and hybrid-layer degradation without compromising the bond strength of the adhesives. In ultracut thin sections, human dentine-chemical agent-adhesive composite interfaces were observed under transmission electron microscope with complementary scanning electron microscopy. Microtensile bond strength tests were also accomplished. Titanium tetrafluoride and titanium tetrafluoride + caffeic acid phenethyl esther applications decreased bond strength values. Caffeic acid phenethyl esther showed decreased silver nitrate penetration for cements based on Bisphenol glycydilmethacrylate and methyl methacrylate, whereas cement based on 4-methacryloyloxyethyl trimellitate anhydride methyl methacrylate showed almost no infiltration. Caffeic acid phenethyl esther application before cementation could inhibit nanoleakage and biodegradation of the hybrid layer.

Abstract

Hybrid-layer degradation occurs because of acidic properties of currently used adhesive systems. Titanium tetrafluoride couples with tooth surface, and titanium compounds are not substituted. Caffeic acid phenethyl esther inhibits endogenous matrix metalloproteinases that cause hybrid-layer degradation. It was hypothesized that titanium tetrafluoride and caffeic acid phenethyl esther application on exposed dentine surfaces before adhesive applications would inhibit nanoleakage and hybrid-layer degradation without compromising the bond strength of the adhesives. In ultracut thin sections, human dentine-chemical agent-adhesive composite interfaces were observed under transmission electron microscope with complementary scanning electron microscopy. Microtensile bond strength tests were also accomplished. Titanium tetrafluoride and titanium tetrafluoride + caffeic acid phenethyl esther applications decreased bond strength values. Caffeic acid phenethyl esther showed decreased silver nitrate penetration for cements based on Bisphenol glycydilmethacrylate and methyl methacrylate, whereas cement based on 4-methacryloyloxyethyl trimellitate anhydride methyl methacrylate showed almost no infiltration. Caffeic acid phenethyl esther application before cementation could inhibit nanoleakage and biodegradation of the hybrid layer.

Citations

9 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

139 downloads since deposited on 05 Feb 2011
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Fixed and Removable Prosthodontics
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:05 Feb 2011 16:53
Last Modified:01 Dec 2016 09:53
Publisher:Sage Publications
ISSN:0022-0345
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1177/0022034510382547
PubMed ID:20940355

Download

[img]
Preview
Filetype: PDF
Size: 441kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations