UZH-Logo

Maintenance Infos

Data mining workflow templates for intelligent discovery assistance and auto-experimentation


Kietz, Jörg-Uwe; Serban, Floarea; Bernstein, Abraham; Fischer, Simon (2010). Data mining workflow templates for intelligent discovery assistance and auto-experimentation. In: Proc of the ECML/PKDD'10 Workshop on Third Generation Data Mining: Towards Service-oriented Knowledge Discovery (SoKD'10), Barcelona, Spain, 20 September 2010 - 24 September 2010, 1-12.

Abstract

Knowledge Discovery in Databases (KDD) has grown a lot during the last years. But providing user support for constructing workflows is still problematic. The large number of operators available in current KDD systems makes it difficult for a user to successfully solve her task. Also, workflows can easily reach a huge number of operators(hundreds) and parts of the workflows are applied several times. Therefore, it becomes hard for the user to construct them manually. In addition, workflows are not checked for correctness before execution. Hence, it frequently happens that the execution of the workflow stops with an error after several hours runtime. In this paper we present a solution to these problems. We introduce a knowledge-based representation of Data Mining (DM) workflows as a basis for cooperative interactive planning. Moreover, we discuss workflow templates, i.e. abstract workflows that can mix executable operators and tasks to be refined later into sub-workflows. This new representation helps users to structure and handle workflows, as it constrains the number of operators that need to be considered. Finally, workflows can be grouped in templates which foster re-use further simplifying DM workflow construction.

Knowledge Discovery in Databases (KDD) has grown a lot during the last years. But providing user support for constructing workflows is still problematic. The large number of operators available in current KDD systems makes it difficult for a user to successfully solve her task. Also, workflows can easily reach a huge number of operators(hundreds) and parts of the workflows are applied several times. Therefore, it becomes hard for the user to construct them manually. In addition, workflows are not checked for correctness before execution. Hence, it frequently happens that the execution of the workflow stops with an error after several hours runtime. In this paper we present a solution to these problems. We introduce a knowledge-based representation of Data Mining (DM) workflows as a basis for cooperative interactive planning. Moreover, we discuss workflow templates, i.e. abstract workflows that can mix executable operators and tasks to be refined later into sub-workflows. This new representation helps users to structure and handle workflows, as it constrains the number of operators that need to be considered. Finally, workflows can be grouped in templates which foster re-use further simplifying DM workflow construction.

Downloads

110 downloads since deposited on 24 Feb 2011
56 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:24 September 2010
Deposited On:24 Feb 2011 15:45
Last Modified:05 Apr 2016 14:44
Other Identification Number:1434
Permanent URL: https://doi.org/10.5167/uzh-44851

Download

[img]
Preview
Filetype: PDF
Size: 500kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations