Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-44853

Stutz, P; Bernstein, A; Cohen, W W (2010). Signal/Collect: graph algorithms for the (Semantic) Web. In: ISWC 2010, Shanghai, China, 7 November 2010 - 11 November 2010, -764.

[img]
Preview
Accepted Version
PDF
568kB

Abstract

The Semantic Web graph is growing at an incredible pace, enabling opportunities to discover new knowledge by interlinking and analyzing previously unconnected data sets. This confronts researchers with a conundrum: Whilst the data is available the programming models that facilitate scalability and the infrastructure to run various algorithms on the graph are missing. Some use MapReduce - a good solution for many problems. However, even some simple iterative graph algorithms do not map nicely to that programming model requiring programmers to shoehorn their problem to the MapReduce model. This paper presents the Signal/Collect programming model for synchronous and asynchronous graph algorithms. We demonstrate that this abstraction can capture the essence of many algorithms on graphs in a concise and elegant way by giving Signal/Collect adaptations of various relevant algorithms. Furthermore, we built and evaluated a prototype Signal/Collect framework that executes algorithms in our programming model. We empirically show that this prototype transparently scales and that guiding computations by scoring as well as asynchronicity can greatly improve the convergence of some example algorithms. We released the framework under the Apache License 2.0 (at http://www.ifi.uzh.ch/ddis/research/sc).

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
DDC:000 Computer science, knowledge & systems
Language:English
Event End Date:11 November 2010
Deposited On:24 Feb 2011 15:57
Last Modified:12 Sep 2012 23:35
Other Identification Number:1450
Citations:Google Scholar™
Scopus®. Citation Count: 4

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page