UZH-Logo

Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices


Ganter, M T; Hofer, C K (2008). Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesthesia and Analgesia, 106(5):1366-1375.

Abstract

Perioperative monitoring of blood coagulation is critical to better understand causes of hemorrhage, to guide hemostatic therapies, and to predict the risk of bleeding during the consecutive anesthetic or surgical procedures. Point-of-care (POC) coagulation monitoring devices assessing the viscoelastic properties of whole blood, i.e., thrombelastography, rotation thrombelastometry, and Sonoclot analysis, may overcome several limitations of routine coagulation tests in the perioperative setting. The advantage of these techniques is that they have the potential to measure the clotting process, starting with fibrin formation and continue through to clot retraction and fibrinolysis at the bedside, with minimal delays. Furthermore, the coagulation status of patients is assessed in whole blood, allowing the plasmatic coagulation system to interact with platelets and red cells, and thereby providing useful additional information on platelet function. Viscoelastic POC coagulation devices are increasingly being used in clinical practice, especially in the management of patients undergoing cardiac and liver surgery. Furthermore, they provide useful information in a large variety of clinical scenarios, e.g., massive hemorrhage, assessment of hypo- and hypercoagulable states, guiding pro- and anticoagulant therapies, and in diagnosing of a surgical bleeding. A surgical etiology of bleeding has to be considered when viscoelastic test results are normal. In summary, viscoelastic POC coagulation devices may help identify the cause of bleeding and guide pro- and anticoagulant therapies. To ensure optimal accuracy and performance, standardized procedures for blood sampling and handling, strict quality controls and trained personnel are required.

Perioperative monitoring of blood coagulation is critical to better understand causes of hemorrhage, to guide hemostatic therapies, and to predict the risk of bleeding during the consecutive anesthetic or surgical procedures. Point-of-care (POC) coagulation monitoring devices assessing the viscoelastic properties of whole blood, i.e., thrombelastography, rotation thrombelastometry, and Sonoclot analysis, may overcome several limitations of routine coagulation tests in the perioperative setting. The advantage of these techniques is that they have the potential to measure the clotting process, starting with fibrin formation and continue through to clot retraction and fibrinolysis at the bedside, with minimal delays. Furthermore, the coagulation status of patients is assessed in whole blood, allowing the plasmatic coagulation system to interact with platelets and red cells, and thereby providing useful additional information on platelet function. Viscoelastic POC coagulation devices are increasingly being used in clinical practice, especially in the management of patients undergoing cardiac and liver surgery. Furthermore, they provide useful information in a large variety of clinical scenarios, e.g., massive hemorrhage, assessment of hypo- and hypercoagulable states, guiding pro- and anticoagulant therapies, and in diagnosing of a surgical bleeding. A surgical etiology of bleeding has to be considered when viscoelastic test results are normal. In summary, viscoelastic POC coagulation devices may help identify the cause of bleeding and guide pro- and anticoagulant therapies. To ensure optimal accuracy and performance, standardized procedures for blood sampling and handling, strict quality controls and trained personnel are required.

Citations

275 citations in Web of Science®
332 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

204 downloads since deposited on 21 Oct 2008
33 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Anesthesiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:May 2008
Deposited On:21 Oct 2008 09:10
Last Modified:05 Apr 2016 12:30
Publisher:Lippincott Wiliams & Wilkins
ISSN:0003-2999
Publisher DOI:10.1213/ane.0b013e318168b367
Official URL:http://www.anesthesia-analgesia.org/cgi/content/full/106/5/1366
PubMed ID:18420846
Permanent URL: http://doi.org/10.5167/uzh-4504

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations