UZH-Logo

Maintenance Infos

Endocrine and behavioural responses to acute central CRF challenge are antagonized in the periphery and CNS, respectively, in C57BL/6 mice


Pryce, C R; Siegl, S; Mayer, R; Rahmanzadeh, G; McAllister, K H (2011). Endocrine and behavioural responses to acute central CRF challenge are antagonized in the periphery and CNS, respectively, in C57BL/6 mice. Neuropharmacology, 60(2-3):318-327.

Abstract

Corticotropin releasing factor (CRF) is a major mediator of central and peripheral responses to environmental stressors, and antagonism of its receptors (CRF-R1, -R2) is an active area of pharmacotherapeutic research for stress-related disorders. Stress responses include CRF activation of the hypothalamus-pituitary-adrenal axis and behavioural inhibition. Valid in vivo models for the study of these neuro-endocrine and -behavioural CRF pathways and their central-peripheral antagonism are important. The aims of this study in C57BL/6 mice were to describe the acute effects of intracerebroventricular (ICV) CRF using plasma ACTH-CORT titres and locomotor activity as readouts, and to study the impact on these readouts of central versus peripheral pre-treatment with the CRF-R1/2 antagonist, astressin. The following experiments were performed: Effects of (i) serial blood sampling (SBS) per se, (ii) physical confinement+SBS, (iii) ICV saline infusion+SBS, on plasma titres of ACTH-CORT. (iv) Effects of ICV or IP CRF infusion on plasma ACTH-CORT. (v) Effects of ICV CRF on plasma CRF. (vi) Effects of ICV or IP astressin on ICV or IP CRF-stimulated plasma CORT. (vii) Effects of ICV or IP astressin on ICV CRF-induced locomotor inactivity. Main findings were: (i)-(ii) Serial blood sampling per se and physical confinement+SBS led to similar, mild increases in plasma ACTH-CORT. (iii) ICV saline infusion led to a marked increase in plasma ACTH, possibly due to assay crossreactivity with "washed out" pituitary peptides, and a mild increase in plasma CORT. (iv) ICV CRF (0.001-1μg) induced no further increase in plasma ACTH versus vehicle, and induced dose-dependent increased plasma CORT. 1μg ICV CRF also reduced locomotor activity. (v) ICV CRF-induced dose-dependent increased plasma CRF. (vi) ICV astressin failed to block ICV CRF-induced increased plasma CORT, whereas IP astressin did do so. (vii) ICV CRF-induced locomotor inactivity was blocked by ICV astressin, but not by IP astressin. Therefore, ICV CRF-induced a dose-dependent increase in plasma CORT via a peripheral pathway and a reduction in locomotion via a central pathway, indicated by the double dissociation in the ability of astressin to antagonize these effects relative to its route of administration, IP or ICV, respectively. The preparation described here could be readily used to provide initial indications on the central and peripheral activity of CRF-R antagonists, including pharmacokinetics following peripheral administration.

Corticotropin releasing factor (CRF) is a major mediator of central and peripheral responses to environmental stressors, and antagonism of its receptors (CRF-R1, -R2) is an active area of pharmacotherapeutic research for stress-related disorders. Stress responses include CRF activation of the hypothalamus-pituitary-adrenal axis and behavioural inhibition. Valid in vivo models for the study of these neuro-endocrine and -behavioural CRF pathways and their central-peripheral antagonism are important. The aims of this study in C57BL/6 mice were to describe the acute effects of intracerebroventricular (ICV) CRF using plasma ACTH-CORT titres and locomotor activity as readouts, and to study the impact on these readouts of central versus peripheral pre-treatment with the CRF-R1/2 antagonist, astressin. The following experiments were performed: Effects of (i) serial blood sampling (SBS) per se, (ii) physical confinement+SBS, (iii) ICV saline infusion+SBS, on plasma titres of ACTH-CORT. (iv) Effects of ICV or IP CRF infusion on plasma ACTH-CORT. (v) Effects of ICV CRF on plasma CRF. (vi) Effects of ICV or IP astressin on ICV or IP CRF-stimulated plasma CORT. (vii) Effects of ICV or IP astressin on ICV CRF-induced locomotor inactivity. Main findings were: (i)-(ii) Serial blood sampling per se and physical confinement+SBS led to similar, mild increases in plasma ACTH-CORT. (iii) ICV saline infusion led to a marked increase in plasma ACTH, possibly due to assay crossreactivity with "washed out" pituitary peptides, and a mild increase in plasma CORT. (iv) ICV CRF (0.001-1μg) induced no further increase in plasma ACTH versus vehicle, and induced dose-dependent increased plasma CORT. 1μg ICV CRF also reduced locomotor activity. (v) ICV CRF-induced dose-dependent increased plasma CRF. (vi) ICV astressin failed to block ICV CRF-induced increased plasma CORT, whereas IP astressin did do so. (vii) ICV CRF-induced locomotor inactivity was blocked by ICV astressin, but not by IP astressin. Therefore, ICV CRF-induced a dose-dependent increase in plasma CORT via a peripheral pathway and a reduction in locomotion via a central pathway, indicated by the double dissociation in the ability of astressin to antagonize these effects relative to its route of administration, IP or ICV, respectively. The preparation described here could be readily used to provide initial indications on the central and peripheral activity of CRF-R antagonists, including pharmacokinetics following peripheral administration.

Citations

2 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

70 downloads since deposited on 15 Mar 2011
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:15 Mar 2011 07:36
Last Modified:05 Apr 2016 14:45
Publisher:Elsevier
ISSN:0028-3908
Publisher DOI:https://doi.org/10.1016/j.neuropharm.2010.09.015
PubMed ID:20868699
Permanent URL: https://doi.org/10.5167/uzh-45227

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 729kB
View at publisher
[img]
Filetype: PDF - Registered users only
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations