UZH-Logo

Effect of improving spatial or temporal resolution on image quality and quantitative perfusion assessment with k-t SENSE acceleration in first-pass CMR myocardial perfusion imaging


Maredia, N; Radjenovic, A; Kozerke, S; Larghat, A; Greenwood, J P; Plein, S (2010). Effect of improving spatial or temporal resolution on image quality and quantitative perfusion assessment with k-t SENSE acceleration in first-pass CMR myocardial perfusion imaging. Magnetic Resonance in Medicine, 64(6):1616-1624.

Abstract

k-t Sensitivity-encoded (k-t SENSE) acceleration has been used to improve spatial resolution, temporal resolution, and slice coverage in first-pass cardiac magnetic resonance myocardial perfusion imaging. This study compares the effect of investing the speed-up afforded by k-t SENSE acceleration in spatial or temporal resolution. Ten healthy volunteers underwent adenosine stress myocardial perfusion imaging using four saturation-recovery gradient echo perfusion sequences: a reference sequence accelerated by sensitivity encoding (SENSE), and three k-t SENSE-accelerated sequences with higher spatial resolution ("k-t High"), shorter acquisition window ("k-t Fast"), or a shared increase in both parameters ("k-t Hybrid") relative to the reference. Dark-rim artifacts and image quality were analyzed. Semiquantitative myocardial perfusion reserve index (MPRI) and Fermi-derived quantitative MPR were also calculated. The k-t Hybrid sequence produced highest image quality scores at rest (P = 0.015). Rim artifact thickness and extent were lowest using k-t High and k-t Hybrid sequences (P < 0.001). There were no significant differences in MPRI and MPR values derived by each sequence. Maximizing spatial resolution by k-t SENSE acceleration produces the greatest reduction in dark rim artifact. There is good agreement between k-t SENSE and standard acquisition methods for semiquantitative and fully quantitative myocardial perfusion analysis.

k-t Sensitivity-encoded (k-t SENSE) acceleration has been used to improve spatial resolution, temporal resolution, and slice coverage in first-pass cardiac magnetic resonance myocardial perfusion imaging. This study compares the effect of investing the speed-up afforded by k-t SENSE acceleration in spatial or temporal resolution. Ten healthy volunteers underwent adenosine stress myocardial perfusion imaging using four saturation-recovery gradient echo perfusion sequences: a reference sequence accelerated by sensitivity encoding (SENSE), and three k-t SENSE-accelerated sequences with higher spatial resolution ("k-t High"), shorter acquisition window ("k-t Fast"), or a shared increase in both parameters ("k-t Hybrid") relative to the reference. Dark-rim artifacts and image quality were analyzed. Semiquantitative myocardial perfusion reserve index (MPRI) and Fermi-derived quantitative MPR were also calculated. The k-t Hybrid sequence produced highest image quality scores at rest (P = 0.015). Rim artifact thickness and extent were lowest using k-t High and k-t Hybrid sequences (P < 0.001). There were no significant differences in MPRI and MPR values derived by each sequence. Maximizing spatial resolution by k-t SENSE acceleration produces the greatest reduction in dark rim artifact. There is good agreement between k-t SENSE and standard acquisition methods for semiquantitative and fully quantitative myocardial perfusion analysis.

Citations

9 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 16 Feb 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2010
Deposited On:16 Feb 2011 08:20
Last Modified:05 Apr 2016 14:45
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:10.1002/mrm.22493
PubMed ID:20878758
Permanent URL: http://doi.org/10.5167/uzh-45301

Download

[img]
Filetype: PDF - Registered users only
Size: 693kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations