Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-45301

Maredia, N; Radjenovic, A; Kozerke, S; Larghat, A; Greenwood, J P; Plein, S (2010). Effect of improving spatial or temporal resolution on image quality and quantitative perfusion assessment with k-t SENSE acceleration in first-pass CMR myocardial perfusion imaging. Magnetic Resonance in Medicine, 64(6):1616-1624.

[img] PDF - Registered users only
693kB

Abstract

k-t Sensitivity-encoded (k-t SENSE) acceleration has been used to improve spatial resolution, temporal resolution, and slice coverage in first-pass cardiac magnetic resonance myocardial perfusion imaging. This study compares the effect of investing the speed-up afforded by k-t SENSE acceleration in spatial or temporal resolution. Ten healthy volunteers underwent adenosine stress myocardial perfusion imaging using four saturation-recovery gradient echo perfusion sequences: a reference sequence accelerated by sensitivity encoding (SENSE), and three k-t SENSE-accelerated sequences with higher spatial resolution ("k-t High"), shorter acquisition window ("k-t Fast"), or a shared increase in both parameters ("k-t Hybrid") relative to the reference. Dark-rim artifacts and image quality were analyzed. Semiquantitative myocardial perfusion reserve index (MPRI) and Fermi-derived quantitative MPR were also calculated. The k-t Hybrid sequence produced highest image quality scores at rest (P = 0.015). Rim artifact thickness and extent were lowest using k-t High and k-t Hybrid sequences (P < 0.001). There were no significant differences in MPRI and MPR values derived by each sequence. Maximizing spatial resolution by k-t SENSE acceleration produces the greatest reduction in dark rim artifact. There is good agreement between k-t SENSE and standard acquisition methods for semiquantitative and fully quantitative myocardial perfusion analysis.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
DDC:170 Ethics
610 Medicine & health
Language:English
Date:2010
Deposited On:16 Feb 2011 08:20
Last Modified:03 Dec 2013 14:09
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:10.1002/mrm.22493
PubMed ID:20878758
Citations:Web of Science®. Times Cited: 6
Google Scholar™
Scopus®. Citation Count: 6

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page