UZH-Logo

Maintenance Infos

High-resolution diffusion tensor imaging of prostate cancer using a reduced FOV technique


Reischauer, C; Wilm, B J; Froehlich, J M; Gutzeit, A; Prikler, L; Gablinger, R; Boesiger, P; Wentz, K U (2011). High-resolution diffusion tensor imaging of prostate cancer using a reduced FOV technique. European Journal of Radiology, 80(2):e34-41.

Abstract

OBJECTIVE: Diffusion tensor imaging (DTI) offers the promise of improved tumor localization in prostate cancer but the technique suffers from susceptibility-induced artifacts that limit the achievable resolution. The present work employs a reduced field-of-view technique that enables high-resolution DTI of the prostate at 3T. Feasibility of the approach is demonstrated in a clinical study including 26 patients and 14 controls. MATERIALS AND METHODS: Reduced field-of-view acquisition was established by non-coplanar application of the excitation and the refocusing pulse in conjunction with outer volume suppression. Accuracy for cancer detection of apparent diffusion coefficient (ADC) mapping and T(2)-weighted imaging was calculated and compared with reference to the findings of trans-rectal ultrasound-guided octant biopsy. Mean ADCs and fractional anisotropy (FA) values in the patients with positive and negative biopsies were compared to each other and to the controls. RESULTS: Fine anatomical details were successfully depicted on the ADC maps with sub-millimeter resolution. Accuracy for prostate cancer detection was 73.5% for ADC maps and 71% for T(2)-weighted images, respectively. Cohen's kappa (kappa=0.48) indicated moderate agreement of the two methods. The mean ADCs were significantly lower, the FA values higher, in the patients with positive biopsy than in the patients with negative biopsy and the controls. Monte Carlo simulations showed that the FA values, but not the ADCs, were slightly overestimated. Bootstrap analysis revealed that the ADC, but not the FA value, is a highly repeatable marker. CONCLUSION: In conclusion, the present work introduces a new approach for high-resolution DTI of the prostate enabling a more accurate detection of focal tumors especially useful in screening populations or as a potential navigator for image-guided biopsy.

OBJECTIVE: Diffusion tensor imaging (DTI) offers the promise of improved tumor localization in prostate cancer but the technique suffers from susceptibility-induced artifacts that limit the achievable resolution. The present work employs a reduced field-of-view technique that enables high-resolution DTI of the prostate at 3T. Feasibility of the approach is demonstrated in a clinical study including 26 patients and 14 controls. MATERIALS AND METHODS: Reduced field-of-view acquisition was established by non-coplanar application of the excitation and the refocusing pulse in conjunction with outer volume suppression. Accuracy for cancer detection of apparent diffusion coefficient (ADC) mapping and T(2)-weighted imaging was calculated and compared with reference to the findings of trans-rectal ultrasound-guided octant biopsy. Mean ADCs and fractional anisotropy (FA) values in the patients with positive and negative biopsies were compared to each other and to the controls. RESULTS: Fine anatomical details were successfully depicted on the ADC maps with sub-millimeter resolution. Accuracy for prostate cancer detection was 73.5% for ADC maps and 71% for T(2)-weighted images, respectively. Cohen's kappa (kappa=0.48) indicated moderate agreement of the two methods. The mean ADCs were significantly lower, the FA values higher, in the patients with positive biopsy than in the patients with negative biopsy and the controls. Monte Carlo simulations showed that the FA values, but not the ADCs, were slightly overestimated. Bootstrap analysis revealed that the ADC, but not the FA value, is a highly repeatable marker. CONCLUSION: In conclusion, the present work introduces a new approach for high-resolution DTI of the prostate enabling a more accurate detection of focal tumors especially useful in screening populations or as a potential navigator for image-guided biopsy.

Citations

23 citations in Web of Science®
26 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 15 Feb 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2011
Deposited On:15 Feb 2011 10:20
Last Modified:05 Apr 2016 14:45
Publisher:Elsevier
ISSN:0720-048X
Publisher DOI:https://doi.org/10.1016/j.ejrad.2010.06.038
PubMed ID:20638208
Permanent URL: https://doi.org/10.5167/uzh-45304

Download

[img]
Filetype: PDF - Registered users only
Size: 559kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations