UZH-Logo

Maintenance Infos

Sweep MRI with algebraic reconstruction


Weiger, M; Hennel, F; Pruessmann, K P (2010). Sweep MRI with algebraic reconstruction. Magnetic Resonance in Medicine, 64(6):1685-1695.

Abstract

In the recently proposed technique Sweep Imaging with Fourier Transform (SWIFT), frequency-modulated radiofrequency pulses are used in concert with simultaneous acquisition to facilitate MRI of samples with very short transverse relaxation time. In the present work, sweep MRI is reviewed from a reconstruction perspective and several extensions and modifications of the current methodology are proposed. An algorithm for algebraic image reconstruction is derived from a comprehensive description of signal formation, including interleaved radiofrequency transmission and acquisition of arbitrary timing as well as the relevant filtering and decimation steps along the receiver chain. The new reconstruction approach readily permits several measures of optimising the signal sampling strategy as demonstrated in simulations and imaging experiments. Employing a variety of radiofrequency pulse envelopes, water and rubber phantoms as well as bone samples with transverse relaxation time in the order of 500 μsec were imaged at signal bandwidths of up to 96 kHz.

In the recently proposed technique Sweep Imaging with Fourier Transform (SWIFT), frequency-modulated radiofrequency pulses are used in concert with simultaneous acquisition to facilitate MRI of samples with very short transverse relaxation time. In the present work, sweep MRI is reviewed from a reconstruction perspective and several extensions and modifications of the current methodology are proposed. An algorithm for algebraic image reconstruction is derived from a comprehensive description of signal formation, including interleaved radiofrequency transmission and acquisition of arbitrary timing as well as the relevant filtering and decimation steps along the receiver chain. The new reconstruction approach readily permits several measures of optimising the signal sampling strategy as demonstrated in simulations and imaging experiments. Employing a variety of radiofrequency pulse envelopes, water and rubber phantoms as well as bone samples with transverse relaxation time in the order of 500 μsec were imaged at signal bandwidths of up to 96 kHz.

Citations

17 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 11 Feb 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2010
Deposited On:11 Feb 2011 14:12
Last Modified:05 Apr 2016 14:45
Publisher:Wiley-Blackwell
ISSN:0740-3194
Publisher DOI:10.1002/mrm.22516
PubMed ID:20949600
Permanent URL: http://doi.org/10.5167/uzh-45311

Download

[img]
Filetype: PDF - Registered users only
Size: 647kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations