UZH-Logo

Alignment of the CMS silicon tracker during commissioning with cosmic rays


CMS Collaboration; Amsler, C; Chiochia, V; De Visscher, S; et al (2010). Alignment of the CMS silicon tracker during commissioning with cosmic rays. Journal of Instrumentation, 5(3):T03009.

Abstract

The CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.

The CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.

Citations

32 citations in Web of Science®
41 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

278 downloads since deposited on 13 Feb 2011
36 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2010
Deposited On:13 Feb 2011 19:27
Last Modified:05 Apr 2016 14:45
Publisher:Institute of Physics Publishing
ISSN:1748-0221
Publisher DOI:10.1088/1748-0221/5/03/T03009
Related URLs:http://arxiv.org/abs/0910.2505
Permanent URL: http://doi.org/10.5167/uzh-45317

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations