UZH-Logo

Maintenance Infos

Control of germline torso expression by the BTB/POZ domain protein pipsqueak is required for embryonic terminal patterning in drosophila


Grillo, M; Furriols, M; Casanova, J; Luschnig, S (2011). Control of germline torso expression by the BTB/POZ domain protein pipsqueak is required for embryonic terminal patterning in drosophila. Genetics, 187(2):513-521.

Abstract

Early embryogenesis in Drosophila melanogaster is controlled by maternal gene products, which are deposited in the egg during oogenesis. It is not well understood how maternal gene expression is controlled during germline development. pipsqueak (psq) is a complex locus that encodes several nuclear protein variants containing a PSQ DNA-binding domain and a BTB/POZ domain. Psq proteins are thought to regulate germline gene expression through epigenetic silencing. While psq was originally identified as a posterior-group gene, we show here a novel role of psq in embryonic terminal patterning. We characterized a new psq loss-of-function allele, psq(rum), which specifically affects signaling by the Torso (Tor) receptor tyrosine kinase. Using genetic epistasis, gene expression analyses, and rescue experiments, we demonstrate that the sole function impaired by the psq(rum) mutation in the terminal system is an essential requirement for controlling transcription of the tor gene in the germline. In contrast, the expression of several other maternal genes, including those encoding Tor pathway components, is not affected by the mutation. Rescue of the psq(rum) terminal phenotype does not require the BTB/POZ domain, suggesting that the PSQ DNA binding domain can function independently of the BTB/POZ domain. Our finding that tor expression is subject to dedicated transcriptional regulation suggests that different maternal genes may be regulated by multiple distinct mechanisms, rather than by a general program controlling nurse-cell transcription.

Early embryogenesis in Drosophila melanogaster is controlled by maternal gene products, which are deposited in the egg during oogenesis. It is not well understood how maternal gene expression is controlled during germline development. pipsqueak (psq) is a complex locus that encodes several nuclear protein variants containing a PSQ DNA-binding domain and a BTB/POZ domain. Psq proteins are thought to regulate germline gene expression through epigenetic silencing. While psq was originally identified as a posterior-group gene, we show here a novel role of psq in embryonic terminal patterning. We characterized a new psq loss-of-function allele, psq(rum), which specifically affects signaling by the Torso (Tor) receptor tyrosine kinase. Using genetic epistasis, gene expression analyses, and rescue experiments, we demonstrate that the sole function impaired by the psq(rum) mutation in the terminal system is an essential requirement for controlling transcription of the tor gene in the germline. In contrast, the expression of several other maternal genes, including those encoding Tor pathway components, is not affected by the mutation. Rescue of the psq(rum) terminal phenotype does not require the BTB/POZ domain, suggesting that the PSQ DNA binding domain can function independently of the BTB/POZ domain. Our finding that tor expression is subject to dedicated transcriptional regulation suggests that different maternal genes may be regulated by multiple distinct mechanisms, rather than by a general program controlling nurse-cell transcription.

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 21 Feb 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:1 February 2011
Deposited On:21 Feb 2011 15:20
Last Modified:05 Apr 2016 14:45
Publisher:Genetics Society of America
ISSN:0016-6731
Publisher DOI:https://doi.org/10.1534/genetics.110.121624
PubMed ID:21098720
Permanent URL: https://doi.org/10.5167/uzh-45347

Download

[img]
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations