Cardiac hybrid imaging with high-speed single-photon emission computed tomography/CT camera to detect ischaemia and coronary artery obstruction

Pazhenkottil, A P; Husmann, L; Kaufmann, P A

DOI: https://doi.org/10.1136/hrt.2010.201996

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-45502

Originally published at:
DOI: https://doi.org/10.1136/hrt.2010.201996
Cardiac hybrid imaging with high-speed single-photon emission computed tomography/CT camera to detect ischaemia and coronary artery obstruction

A 48-year-old female patient (body mass index 33 kg/m\(^2\)) without known coronary artery disease was treated over several weeks for prolonged episodes of back pain unrelated to physical activity. Due to the persistence and progression of symptoms the patient was evaluated for suspected coronary artery disease. Blood test (cardiac enzymes) as well as physical exercise test was negative but ECG at rest revealed signs of anterior non-Q-wave infarction. Therefore, the patient was referred for further non-invasive comprehensive cardiac evaluation by contrast enhanced low-dose (prospective ECG-triggering) computed tomography coronary angiography (CTCA) combined with rest/stress myocardial perfusion single-photon emission computed tomography (SPECT). This was performed on a new dedicated cardiac SPECT/CT hybrid scanner (Discovery NM/CT 570c; GE Healthcare, Milwaukee, Wisconsin, USA) integrating the latest generation gamma camera using ultrafast semiconducting cadmium zinc telluride pinhole detectors with a 64-slice CT device.

The hybrid images revealed a partially reversible anteroapical perfusion defect (figure 1, panels A and B), caused by total occlusions of the proximal left anterior descending coronary artery and of a diagonal branch (figure 1, panel C). Coronary angiography confirmed these findings (figure 1, panel D), and the patient was re-canalised in the same session.

This case illustrates the advantages of using a high-speed cadmium zinc telluride SPECT/CT hybrid scanner that allows a combined morphological and functional assessment in one session with minimised effective radiation dose (3 mSv for CTCA and 2/6 mSv for stress/rest SPECT) and shortened scan time (total SPECT/CTCA acquisition time below 15 min), demonstrating the importance and the ease of performing comprehensive non-invasive tests in low to moderate pretest probability patients.

Figure 1

Aju P Pazhenkottil, Lars Husmann, Philipp A Kaufmann

Correspondence to Philipp A Kaufmann; pak@usz.ch

Competing interests None to declare.

Patient consent Obtained.

Ethics approval This study was conducted with the approval of the local ethics committee University Hospital Zurich.

Provenance and peer review Not commissioned; not externally peer reviewed.
Cardiac hybrid imaging with high-speed single-photon emission computed tomography/CT camera to detect ischaemia and coronary artery obstruction

Aju P Pazhenkottil, Lars Husmann and Philipp A Kaufmann

Heart published online September 20, 2010
doi: 10.1136/hrt.2010.201996

Updated information and services can be found at:
http://heart.bmj.com/content/early/2010/09/20/hrt.2010.201996.full.html

These include:

- References
 Article cited in: http://heart.bmj.com/content/early/2010/09/20/hrt.2010.201996.full.html#related-urls

- P_P
 Published online September 20, 2010 in advance of the print journal.

- Email alerting service
 Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles will establish the date of initial publication.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/