First measurement of Bose-Einstein correlations in proton-proton collisions at $\sqrt{s}=0.9$ and 2.36 TeV at the LHC

CMS Collaboration; Khachatryan, V; Amsler, C; Chiochia, S; De Visscher, S; et al

Abstract: Bose-Einstein correlations have been measured using samples of proton-proton collisions at 0.9 and 2.36 TeV center-of-mass energies, recorded by the CMS experiment at the CERN Large Hadron Collider. The signal is observed in the form of an enhancement of pairs of same-sign charged particles with small relative four-momentum. The size of the correlated particle emission region is seen to increase significantly with the particle multiplicity of the event.

DOI: https://doi.org/10.1103/PhysRevLett.105.032001

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-45609
Accepted Version

Originally published at:
CMS Collaboration; Khachatryan, V; Amsler, C; Chiochia, S; De Visscher, S; et al (2010). First measurement of Bose-Einstein correlations in proton-proton collisions at $\sqrt{s}=0.9$ and 2.36 TeV at the LHC. Physical Review Letters, 105(3):03200.
DOI: https://doi.org/10.1103/PhysRevLett.105.032001
First Measurement of Bose–Einstein Correlations in proton-proton Collisions at $\sqrt{s} = 0.9$ and 2.36 TeV at the LHC

The CMS Collaboration

Abstract

Bose–Einstein correlations have been measured using samples of proton-proton collisions at 0.9 and 2.36 TeV center-of-mass energies, recorded by the CMS experiment at the CERN Large Hadron Collider. The signal is observed in the form of an enhancement of pairs of same-sign charged particles with small relative four-momentum. The size of the correlated particle emission region is seen to increase significantly with the particle multiplicity of the event.

*See Appendix A for the list of collaboration members
In particle collisions, the space-time structure of the hadronization source can be studied using measurements of Bose–Einstein correlations (BEC) between pairs of identical bosons. Since the first observation of BEC fifty years ago in proton-antiproton interactions [1], a number of measurements have been made by several experiments using different initial states; a detailed list of the experimental results can be found in [2, 3]. Boson interferometry at the Large Hadron Collider provides a powerful tool to investigate the space-time structure of the particle emission source on femtometric length scales at different center-of-mass energies and with different initial states, using the same detector. This letter reports the first measurement of BEC parameters in \(pp \) collisions at 0.9 and 2.36 TeV with the CMS detector.

Constructive interference affects the joint probability for the emission of a pair of identical bosons with four-momenta \(p_1 \) and \(p_2 \). Experimentally, the proximity in phase space between final-state particles is quantified by the Lorentz-invariant quantity

\[
Q = \sqrt{- (p_1 - p_2)^2} = \sqrt{M^2 - 4m^2},
\]

where \(M \) is the invariant mass of the two particles, assumed to be pions with mass \(m_\pi \). The BEC effect is observed as an enhancement at low \(Q \) of the ratio of the \(Q \) distributions for pairs of identical particles in the same event, and for pairs of particles in a reference sample that by construction is expected to include no BEC effect:

\[
R(Q) = \frac{(dN/dQ)}{(dN_{\text{ref}}/dQ)},
\]

(1)

which is then fitted with the parameterization

\[
R(Q) = C \left[1 + \lambda \Omega(Qr) \right] \cdot (1 + \delta Q),
\]

(2)

In a static model of particle sources, \(\Omega(Qr) \) is the Fourier transform of the spatial distribution of the emission region of bosons with overlapping wave functions, characterized by an effective size \(r \). It is often parameterized as an exponential function, \(\Omega(Qr) = e^{-Qr} \), or with a Gaussian form, \(\Omega(Qr) = e^{-(Qr)^2} \) ([4] and references therein). The parameter \(\lambda \) reflects the BEC strength for incoherent boson emission from independent sources, \(\delta \) accounts for long-range momentum correlations, and \(C \) is a normalization factor.

The data used for the present analysis were collected by the CMS experiment in December 2009 from proton-proton collisions at center-of-mass energies of 0.9 and 2.36 TeV. A detailed description of the CMS detector can be found in [5]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a uniform magnetic field of 3.8 T. The inner tracking system is the most relevant detector for the present analysis. It is composed of a pixel detector with three barrel layers at radii between 4.4 and 10.2 cm and a silicon strip tracker with 10 barrel detection layers extending outwards to a radius of 1.1 m. Each system is completed by two endcaps, extending the acceptance up to a radius of 2.5. The transverse-momentum (\(p_T \)) resolution, for 1 GeV charged particles, is between 0.7% at \(\eta = 0 \) and 2% at \(|\eta| = 2.5 \). The events were selected by requiring activity in both beam scintillator counters [6]. A minimum-bias Monte Carlo (MC) sample was generated using PYTHIA (with D6T tune) [7] followed by full detector simulation based on the Geant4 program [8]. Additional PYTHIA MC samples were generated to simulate BEC effects with both Gaussian and exponential forms of \(\Omega(Qr) \).

Charged particles are required to have \(p_T > 200 \) MeV, which is sufficient for particles emitted from the interaction region to cross all three barrel layers of the pixel detector and ensure good two-track separation. Their pseudorapidity is required to satisfy \(|\eta_{\text{track}}| < 2.4 \). To ensure high purity of the primary track selection, the trajectories are required to be reconstructed in fits with more than five degrees of freedom (dof) and \(\chi^2/N_{\text{dof}} < 5.0 \). The transverse impact parameter with respect to the collision point is required to satisfy \(|d_{xy}| < 0.15 \) cm. The innermost
measured point of the track must be less than 20 cm from the beam axis, in order to reduce electrons and positrons from photon conversions in the detector material and secondary particles from the decay of long-lived hadrons (K^0_S, Λ, etc.). In a total of 270,472 (13,548) events selected at 0.9 (2.36) TeV center-of-mass energy, 2,903,754 (188,140) tracks are accepted by these selection criteria.

All pairs of same-charge particles with Q between 0.02 and 2 GeV are used for the measurement. The lower limit is chosen to avoid cases of tracks that are duplicated or not well separated, while the upper limit extends far enough beyond the signal region to verify a good match between signal and reference samples. A study with simulated data shows that the ratio of the tracking efficiencies of particle pairs in the signal and in the reference samples is independent of Q in the measurement region.

Coulomb interactions between charged particles modify their relative momentum distribution. This effect, which differs for pairs with same charge (repulsion) and opposite charge (attraction), is corrected for by using Gamow factors [9]. As a cross-check, the enhancement in the production of opposite-charge particle pairs with small values of Q is measured in the data and is found to be reproduced by the Gamow factors to within ±15%.

Different methods are designed to pair uncorrelated charged particles and to define reference samples used to extract the distribution in the denominator of Eq. (1). Opposite-charge pairs: this data set is a natural choice but contains resonances (η, ρ, ...) which are not present in the same-charge combinations. Opposite-hemisphere pairs: tracks are paired after inverting in space the three-momentum of one of the two particles: $(E, \vec{p}) \rightarrow (E, -\vec{p})$; this procedure is applied to pairs with same and opposite charges. Rotated particles: particle pairs are constructed after inverting the x and y components of the three-momentum of one of the two particles: $(p_x, p_y, p_z) \rightarrow (-p_x, -p_y, p_z)$. Pairs from mixed events: particles from different events are combined with the following methods: i) events are mixed at random; ii) events with similar charged particle multiplicity in the same η regions are selected; iii) events with an invariant mass of all charged particles similar to that of the signal are used to form the pairs.

As an example, the ratios $R(Q)$ obtained with the opposite-hemisphere, same-charge reference samples are shown in Fig. 1 both for data and simulation without BEC. A significant excess at small values of Q is observed in the data. Additional details are given in [10].

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1.png}
\caption{Ratios $R(Q)$ obtained with the opposite-hemisphere, same-charge reference samples for data (dots) and MC with no BEC effect (crosses).}
\end{figure}

In order to reduce the bias due to the construction of the reference samples, a double ratio R is defined:

$$R(Q) = \frac{R}{R_{MC}} = \left(\frac{dN/dQ}{dN_{ref}/dQ} \right) / \left(\frac{dN_{MC}/dQ}{dN_{MC,ref}/dQ} \right),$$

(3)
Table 1: Results of fits to the double ratios R for several reference samples, using the parameterization of Eq. (2) with the exponential form, for 0.9 TeV data (top) and 2.36 TeV data (bottom). Errors are statistical only, and quoted as if independent.

<table>
<thead>
<tr>
<th>Reference sample</th>
<th>p value (%)</th>
<th>C</th>
<th>λ</th>
<th>r (fm)</th>
<th>δ (10^{-3} GeV$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposite charge</td>
<td>21.9</td>
<td>0.988 ± 0.003</td>
<td>0.56 ± 0.03</td>
<td>1.46 ± 0.06</td>
<td>-4 ± 2</td>
</tr>
<tr>
<td>Opposite hem. same ch.</td>
<td>7.3</td>
<td>0.976 ± 0.003</td>
<td>0.63 ± 0.03</td>
<td>1.50 ± 0.06</td>
<td>11 ± 2</td>
</tr>
<tr>
<td>Opposite hem. opp. ch.</td>
<td>11.9</td>
<td>0.975 ± 0.003</td>
<td>0.59 ± 0.03</td>
<td>1.42 ± 0.06</td>
<td>13 ± 2</td>
</tr>
<tr>
<td>Rotated</td>
<td>0.02</td>
<td>0.929 ± 0.003</td>
<td>0.68 ± 0.02</td>
<td>1.29 ± 0.04</td>
<td>58 ± 3</td>
</tr>
<tr>
<td>Mixed evts. (random)</td>
<td>1.9</td>
<td>1.014 ± 0.002</td>
<td>0.62 ± 0.04</td>
<td>1.85 ± 0.09</td>
<td>-20 ± 2</td>
</tr>
<tr>
<td>Mixed evts. (same mult.)</td>
<td>12.2</td>
<td>0.981 ± 0.002</td>
<td>0.66 ± 0.03</td>
<td>1.72 ± 0.06</td>
<td>11 ± 2</td>
</tr>
<tr>
<td>Mixed evts. (same mass)</td>
<td>17.0</td>
<td>0.976 ± 0.002</td>
<td>0.60 ± 0.03</td>
<td>1.59 ± 0.06</td>
<td>14 ± 2</td>
</tr>
<tr>
<td>Combined</td>
<td>2.9</td>
<td>0.984 ± 0.002</td>
<td>0.63 ± 0.02</td>
<td>1.59 ± 0.05</td>
<td>8 ± 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference sample</th>
<th>p value (%)</th>
<th>C</th>
<th>λ</th>
<th>r (fm)</th>
<th>δ (10^{-3} GeV$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opposite charge</td>
<td>57</td>
<td>1.004 ± 0.008</td>
<td>0.53 ± 0.08</td>
<td>1.65 ± 0.23</td>
<td>-16 ± 6</td>
</tr>
<tr>
<td>Opposite hem. same ch.</td>
<td>42</td>
<td>0.977 ± 0.006</td>
<td>0.68 ± 0.11</td>
<td>1.95 ± 0.24</td>
<td>15 ± 5</td>
</tr>
<tr>
<td>Opposite hem. opp. ch.</td>
<td>46</td>
<td>0.969 ± 0.005</td>
<td>0.70 ± 0.11</td>
<td>2.02 ± 0.23</td>
<td>24 ± 5</td>
</tr>
<tr>
<td>Rotated</td>
<td>42</td>
<td>0.933 ± 0.007</td>
<td>0.61 ± 0.07</td>
<td>1.49 ± 0.15</td>
<td>38 ± 6</td>
</tr>
<tr>
<td>Mixed evts. (random)</td>
<td>23</td>
<td>1.041 ± 0.005</td>
<td>0.74 ± 0.15</td>
<td>2.78 ± 0.36</td>
<td>-40 ± 4</td>
</tr>
<tr>
<td>Mixed evts. (same mult.)</td>
<td>35</td>
<td>0.974 ± 0.005</td>
<td>0.63 ± 0.10</td>
<td>2.01 ± 0.23</td>
<td>20 ± 5</td>
</tr>
<tr>
<td>Mixed evts. (same mass)</td>
<td>73</td>
<td>0.964 ± 0.005</td>
<td>0.73 ± 0.11</td>
<td>2.18 ± 0.23</td>
<td>28 ± 5</td>
</tr>
<tr>
<td>Combined</td>
<td>89</td>
<td>0.981 ± 0.005</td>
<td>0.66 ± 0.07</td>
<td>1.99 ± 0.18</td>
<td>13 ± 4</td>
</tr>
</tbody>
</table>

where the subscripts “MC” and “MC, ref” refer to the corresponding distributions from the MC simulated data generated without BEC effects.

The results of fits of $R(Q)$ based on the parameterization of Eq. (2) with $\Omega(Qr) = e^{-Qr}$ are given in Table 1, both for 0.9 and 2.36 TeV data. In the case of the opposite-charge sample, it is found that the region with $0.6 < Q < 0.9$ GeV, containing a sizeable contribution of pairs from $\rho \rightarrow \pi^+\pi^-$ decays, is not well described by the MC [10]. This region is therefore excluded from the fits with this reference sample and also with the combined sample defined below.

As a cross-check, the dE/dx [11] measurements of particles in the tracker are used to select a sample enriched in $\pi\pi$ pairs, and another sample with one of the particles not consistent with the pion hypothesis. Figure 2 presents the double ratios for these two samples at $\sqrt{s} = 0.9$ TeV, showing that an enhancement at small Q values is observed only in the case of identified $\pi\pi$ pairs.

As none of the definitions of the reference samples is preferable a priori, an additional, “combined” double ratio R^{comb} is formed, where the data and MC distributions are obtained by summing the Q distributions of the seven corresponding reference samples.

The distributions of R^{comb} for 0.9 and 2.36 TeV data are shown in Fig. 3, and the values of the fit parameters are given in Table 1. A large correlation is found between the parameters λ and r, as well as between δ and C (correlation coefficients of 0.82 and -0.97 at 0.9 TeV, respectively). The data are described by Eq. (2) with an exponential form for $\Omega(Qr)$, as shown by the solid lines in Fig. 3 and confirmed by the fit probability (p value) in Table 1. The fit with a Gaussian form, $\Omega(Qr) = e^{-(Qr)^2}$, which yields $\lambda = 0.32 \pm 0.01$, $r = 0.98 \pm 0.03$ fm, does not correctly describe the $R(Q)$ distribution, as shown by the dashed lines in Fig. 3 and by a p value of 10^{-21}. Gaussian shape fits also proved to offer a poor description of the data in previous measurements [12–14].
Although the values of r obtained in the exponential fits cannot be compared directly with results obtained with a Gaussian function, it should be noted for comparison purposes that the first moment of the $\Omega(Qr)$ distribution corresponds to $1/r$ for an exponential shape and to $\frac{1}{r\sqrt{\pi}}$ for a Gaussian form. Alternative functions, as defined in [13,15,16], also describe the data well with similar p values. In particular for the Lévy parameterization, $\Omega(Qr) = e^{-(Qr)^\alpha}$, the fitted values are $\lambda = 0.93 \pm 0.11$, $r = 2.46 \pm 0.38$ fm, and $\alpha = 0.76 \pm 0.06$, with a p value of 12.8%.

The leading source of systematic uncertainty on the measurements arises from the fact that none of the reference samples is expected to give a perfect description of the Q distribution in the absence of BEC, and that none of them can be preferred or discarded a priori. The corresponding contribution to the systematic error is computed as the r.m.s. spread between the results obtained for the different samples, i.e., $\pm 7\%$ for λ and $\pm 12\%$ for r. The systematic uncertainty related to the Coulomb corrections is computed by propagating the measured $\pm 15\%$ agreement margin, resulting in $\pm 2.8\%$ variation for λ and $\pm 0.8\%$ for r. The presence of a possible bias introduced by the track reconstruction and selection requirements was studied by comparing the results obtained at the generator and reconstruction levels in the MC simulation.
Figure 4: Values of the λ (top) and r (bottom) parameters as a function of the charged-particle multiplicity in the event for combined (dots) and opposite-hemisphere, same-charge (open circles) reference samples, at 0.9 TeV. The errors shown are statistical only. The points are placed on the horizontal scale at the average of the multiplicity distribution in the corresponding bin.

that incorporates BEC effects. The differences in the fitted parameter values for the different reference samples are smaller than the statistical errors and no systematic bias is observed for r. No correction is therefore applied and no additional systematic error is included. For the 2.36 TeV data the same relative systematic uncertainties as for the 0.9 TeV results are used, in view of the reduced size of the sample and the larger statistical uncertainties of the fit results.

The BEC parameters measured with the combined reference sample are

$\lambda = 0.625 \pm 0.021$ (stat.) ± 0.046 (syst.) and $r = 1.59 \pm 0.05$ (stat.) ± 0.19 (syst.) fm at 0.9 TeV;

$\lambda = 0.663 \pm 0.073$ (stat.) ± 0.048 (syst.) and $r = 1.99 \pm 0.18$ (stat.) ± 0.24 (syst.) fm at 2.36 TeV.

The systematic errors on λ and r in each multiplicity bin are taken as the r.m.s. spread of the results obtained with the various reference samples. Due to the limited sample size of the 2.36 TeV data only two multiplicity bins are considered, one for multiplicities smaller than 20 tracks, the other for multiplicities between 20 and 60 tracks. The values measured for the parameters with the combined reference samples are $\lambda = 0.65 \pm 0.08$ and $r = 1.19 \pm 0.17$ fm and $\lambda = 0.63 \pm 0.05$, and $r = 2.85 \pm 0.38$ fm for these two multiplicity bins, where the errors are statistical only. For comparison, the values obtained for the same multiplicity bins at 0.9 TeV are $\lambda = 0.65 \pm 0.02$ and $\lambda = 0.63 \pm 0.05$, and $r = 1.25 \pm 0.05$ fm and $r = 2.27 \pm 0.12$ fm, respectively. These measurements are consistent within errors. The dependence of r on multiplicity was already observed in previous measurements as discussed in detail in [3].

In summary, Bose–Einstein correlations have been measured for the first time at the LHC by the CMS experiment in pp collisions at 0.9 and 2.36 TeV center-of-mass energies. Several reference samples were used to extract the signal. For all of them an exponential shape fits the data
Table 2: Results of the fits to the double ratio R_{comb} for the combined reference samples, using the parameterization of Eq. (2) with the exponential form, as a function of the charged-particle multiplicity in the event, for 0.9 TeV data. Errors are statistical only, except for λ and r where statistical (first error) and systematic uncertainties (second error) are given.

<table>
<thead>
<tr>
<th>Mult. range</th>
<th>p val. (%)</th>
<th>C</th>
<th>λ</th>
<th>r (fm)</th>
<th>δ (10^{-3} GeV$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–9</td>
<td>97</td>
<td>0.90±0.01</td>
<td>0.89±0.05±0.20</td>
<td>1.00±0.07±0.05</td>
<td>72±12</td>
</tr>
<tr>
<td>10–14</td>
<td>38</td>
<td>0.97±0.01</td>
<td>0.64±0.04±0.09</td>
<td>1.28±0.08±0.09</td>
<td>18±5</td>
</tr>
<tr>
<td>15–19</td>
<td>27</td>
<td>0.96±0.01</td>
<td>0.60±0.04±0.10</td>
<td>1.40±0.10±0.05</td>
<td>28±5</td>
</tr>
<tr>
<td>20–29</td>
<td>24</td>
<td>0.99±0.01</td>
<td>0.59±0.05±0.17</td>
<td>1.98±0.14±0.45</td>
<td>13±3</td>
</tr>
<tr>
<td>30–79</td>
<td>28</td>
<td>1.00±0.01</td>
<td>0.69±0.09±0.17</td>
<td>2.76±0.25±0.44</td>
<td>10±3</td>
</tr>
</tbody>
</table>

significantly better than a Gaussian shape. An increase of the effective size of the emission region with charged-particle multiplicity in the event has been observed.

Acknowledgements

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium
S. Costantini, M. Grunewald, B. Klein, A. Marinov, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, L. Mundim, V. Oguri, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, F. Torres Da Silva De Araujo

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
F.A. Dias, M.A.F. Dias, T.R. Fernandez Perez Tomei, E. M. Gregores², F. Marinho, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
N. Darmenov¹, L. Dimitrov, V. Genchev¹, P. Iaydjiev, S. Piperov, S. Stoykova, G. Sultanov, R. Trayanov, I. Vankov
University of Sofia, Sofia, Bulgaria
M. Dyulendarova, R. Hadjiiska, V. Kozhuharov, L. Litov, E. Marinova, M. Mateev, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
Y. Ban, S. Guo, Z. Hu, Y. Mao, S.J. Qian, H. Teng, B. Zhu

Universidad de Los Andes, Bogota, Colombia

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, K. Lelas, R. Plestina\(^3\), D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, S. Morovic

University of Cyprus, Nicosia, Cyprus

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
M. Mahmoud\(^4\)

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadastik, K. Kannike, M. Müntel, M. Raidal, L. Rebane

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola

Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, L. Bianchini, M. Bluji\(^3\), C. Broutin, P. Busson, C. Charlot, L. Dobrzynski, S. Elgammal,

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia
V. Roinishvili

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
J. Bauer, V. Buege, A. Cakir, T. Chwalek, D. Daeuwel, W. De Boer, A. Dierlamm, G. Dirkes,
The CMS Collaboration

Institute of Nuclear Physics "Demokritos", Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Petrakou

University of Athens, Athens, Greece
L. Gouskos, P. Katsas, A. Panagiotou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India

University of Delhi, Delhi, India

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, A. Fahim, A. Jafari, M. Mohammad Najafabadi, S. Paktinat Mehdiaibadi, B. Safarzadeh, M. Zeinali

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglia, G. Broccolo, V. Ciulli, C. Civinini, R. D'Allessandro, E. Focardi, S. Frosali, E. Gallo, C. Genta, P. Lenzì, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, S. Colafranceschi, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Genova, Italy
P. Fabbricatore, R. Musenich

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy

INFN Sezione di Napoli, Università di Napoli "Federico II", Napoli, Italy
S. Buontempo, A. Cimmino, A. De Cosa, M. De Gruttola, F. Fabozzi, A.O.M. Iorio, L. Lista, P. Noli, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
P. Baesso, U. Berzana, C. Riccardi, P. Torre, P. Vitulo, C. Viviani

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Roma, Università di Roma "La Sapienza", Roma, Italy

13
INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,b, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, C. Bottaa,b, N. Cartigliaa, R. Castelloa,b, M. Costaa,b, N. Demariaa, A. Grazianoa,b, C. Mariottia, M. Maronea,b, S. Masellia, E. Migliorea,b, G. Milaa,b, V. Monacoa,b, M. Musicha,b, M.M. Obertinoa,c, N. Piastraa, M. Pelliccionia,b,1, A. Romera,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, D. Trocinoa,b, A. Vilela Pereiraa,b,1

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
F. Ambroglinia,b, S. Belfortea, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, D. Montaninoa, A. Penzoa

Kyunghook National University, Daegu, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Zero Kim, J.Y. Kim, S. Song

Korea University, Seoul, Korea

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park

Sungkyunkwan University, Suwon, Korea
S. Choi, Y. Choi, Y.K. Choi, J. Goh, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M. Janulis, D. Martisiute, P. Petrov, T. Sabonis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla Valdez1, E. De La Cruz Burelo, R. Lopez-Fernandez, A. Sánchez Hernández, L.M. Villaseñor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
P. Allfrey, D. Krofcheck, J. Tam

University of Canterbury, Christchurch, New Zealand
P.H. Butler, T. Signal, J.C. Williams

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, I. Ahmed, M.I. Asghar, H.R. Hoorani, W.A. Khan, T. Khurshid, S. Qazi

Institute of Experimental Physics, Warsaw, Poland
M. Cwiok, W. Dominik, K. Dorobek, M. Konecki, J. Krolikowski
Soltan Institute for Nuclear Studies, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
N. Bondar, V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia

Moscow State University, Moscow, Russia

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, I. Dremin, M. Kirakosyan, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, D. Kricic, D. Maletic, J. Milosevic, J. Puzovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, I. Gonzalez Caballero, L. Lloret Iglesias, J.M. Vizan Garcia
Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Cukurova University, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Department of Physics, Istanbul, Turkey
M. Deliomeroglu, D. Demir, E. Guelmaz, A. Halu, B. Isildak, M. Kaya, O. Kaya, M. Ozbek, S. Ozkorucuklu, N. Sonmez

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, University of London, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, I.D. Reid, L. Teodorescu

Boston University, Boston, USA
T. Bose, A. Clough, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, Los Angeles, USA

University of California, Riverside, Riverside, USA
University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
A. Biselli, G. Cirino, D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
C. Ceron, V. Gautelmay, L. Kramer, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, D. Mesa, J.L. Rodriguez
Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, S. Guragain, M. Hohlmann, H. Kalakhety, H. Mermerkaya, R. Ralich, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, P. Sonnek, D. Summers
University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, J. Gu, P. Killewald, T.Y. Ling, G. Williams

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
P. Jindal, N. Parashar

Rice University, Houston, USA

University of Rochester, Rochester, USA

The Rockefeller University, New York, USA
A. Bhatti, L. Demortier, K. Goulianos, K. Hatakeyama, G. Lungu, C. Mesropian, M. Yan

Rutgers, the State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York
Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA
E. Appelt, E. Brownson, D. Engh, C. Florez, W. Gabella, W. Johns, P. Kurt, C. Maguire, A. Melo, P. Sheldon, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, M. Buehler, S. Conetti, B. Cox, R. Hirosky, A. Ledovskoy, C. Neu, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, K. Gunthoti, R. Harr, P.E. Karchin, M. Mattson, C. Milštène, A. Sakharov

University of Wisconsin, Madison, USA

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at Universidade Federal do ABC, Santo Andre, Brazil
3: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
4: Also at Fayoum University, El-Fayoum, Egypt
5: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
6: Also at University of Haute-Alsace, Mulhouse, France
7: Also at ATOMKI, Debrecen, Hungary
8: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
9: Also at Eötvös Loránd University, Budapest, Hungary
10: Also at University of California, San Diego, La Jolla, USA
11: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
12: Also at University of Tampere, Finland
13: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
14: Also at University of Helsinki, Helsinki, Finland
15: Also at California Institute of Technology, Pasadena, USA
16: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
17: Also at Paul Scherrer Institut, Villigen, Switzerland
18: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
19: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
20: Also at University of Kansas, Lawrence, USA
21: Also at University of Athens, Athens, Greece
22: Also at Texas A&M University, College Station, USA
23: Also at Texas Tech University, Lubbock, USA
24: Also at Vanderbilt University, Nashville, USA
25: Also at Wayne State University, Detroit, USA
26: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
27: Also at Kafkas University, Kars, Turkey
28: Also at Suleyman Demirel University, Isparta, Turkey
29: Also at Ege University, Izmir, Turkey
30: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
31: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
32: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
33: Also at Institute for Nuclear Research, Moscow, Russia
34: Also at Istanbul Technical University, Istanbul, Turkey