Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-45802

Nowik, M; Kampik, N B; Mihailova, M; Eladari, D; Wagner, C A (2010). Induction of metabolic acidosis with ammonium chloride (NH4Cl) in mice and rats-species differences and technical considerations. Cellular Physiology and Biochemistry, 26(6):1059-1072.

[img]
Preview
PDF
738kB

View at publisher

Abstract

Ammonium chloride addition to drinking water is often used to induce metabolic acidosis (MA) in rodents but may also cause mild dehydration. Previous microarray screening of acidotic mouse kidneys showed upregulation of genes involved in renal water handling. Thus, we compared two protocols to induce metabolic acidosis in mice and rats: standard 0.28M NH(4)Cl in drinking water or an equivalent amount of NH(4)Cl in food. Both treatments induced MA in mice and rats. In rats, NH (4)Cl in water caused signs of dehydration, reduced mRNA abundance of the vasopression receptor 2 (V2R), increased protein abundance of the aquaporin water channels AQP2 and AQP3 and stimulated phosphorylation of AQP2 at residues Ser256 and Ser261. In contrast, NH(4)Cl in food induced massive diuresis, decreased mRNA levels of V2R, AQP2, and AQP3, did not affect protein abundance of AQP2 and AQP3, and stimulated phosphorylation at Ser261 but not pSer256 of AQP2. In mice, NH(4)Cl in drinking water stimulated urine concentration, increased AQP2 and V2R mRNA levels, and enhanced AQP2 and AQP3 protein expression with higher levels of AQP2 pSer256 and pSer261. Addition of NH(4)Cl to food, stimulated diuresis, had no effect on mRNA levels of AQP2, AQP3, and V2R, and enhanced only AQP3 protein abundance whereas pSer256-AQP2 and pSer261-AQP2 remained unaltered. Similarly, AQP2 staining was more intense and luminal in kidney from mice with NH(4)Cl in water but not in food. Pendrin, SNAT3 and PEPCK mRNA expression in mouse kidney were not affected by the route of N(4)Cl application. Thus, addition of NH(4)Cl to water or food causes MA but has differential effects on diuresis and expression of mRNAs and proteins related to renal water handling. Moreover, mice and rats respond differently to NH(4)Cl loading, and increased water intake and diuresis may be a compensatory mechanism during MA. It may be necessary to consider these effects in planning and interpreting experiments of NH(4)Cl supplementation to animals.

Citations

12 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

76 downloads since deposited on 15 Feb 2011
31 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology

04 Faculty of Medicine > Center for Integrative Human Physiology
DDC:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2010
Deposited On:15 Feb 2011 12:44
Last Modified:27 Nov 2013 17:11
Publisher:Karger
ISSN:1015-8987
Additional Information:© 2010 S. Karger AG
Publisher DOI:10.1159/000323984
PubMed ID:21220937

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page