Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-46438

Shabarova, T; Pernthaler, J (2010). Karst pools in subsurface environments: collectors of microbial diversity or temporary residence between habitat types. Environmental Microbiology, 12(4):1061-1074.

[img]Accepted Version
PDF - Registered users only
View at publisher


We studied bacterial diversity and community composition in three shallow pools of a Swiss karst cave system with contrasting hydrological and hydrochemical properties. The microbial assemblages in the pools were remarkably different, and only one operational taxonomic unit of 16S rRNA genes (OTU, 97% similarity) was shared between the three of them (total OTU number in all pools: 150). Unexpectedly high microbial phylotype richness was found even in the two pools without groundwater contact and with low concentrations of organic carbon and total cell numbers (< 10(4) ml(-1)). One of these seepage water fed systems harboured 15 distinct OTUs from several deeply branching lineages of the candidate phylum OP3, whereas representatives of this group were not detected in the other two pools. A tentative phylogeographic analysis of available OP3-related sequences in the context of our data set revealed that there was generally little agreement between the habitats of origin of closely related sequence types. Two bacterial clades affiliated with the obligate methylamine utilizer Methylotenera mobilis were only found in the pool that was exposed to repeated flooding events. These bacteria formed relatively stable populations of up to 6% of total cell counts over periods of several months irrespective of inundation by groundwater. This suggests that karst water may provide a means of transport for these bacteria from terrestrial to freshwater habitats.


18 citations in Web of Science®
19 citations in Scopus®
Google Scholar™



1 download since deposited on 24 Feb 2011
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Deposited On:24 Feb 2011 18:49
Last Modified:05 Apr 2016 14:49
Publisher DOI:10.1111/j.1462-2920.2009.02151.x
PubMed ID:20132276

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page