Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Krackow, S; Tkadlec, E (2001). Analysis of brood sex ratios: implications of offspring clustering. Behavioral Ecology and Sociobiology, 50(4):293-301.

Full text not available from this repository.

View at publisher

Abstract

Generalized linear models (GLMs) are increasinglyused in modern statistical analyses of sex ratio variation because they are able to determine variable design effects on binary response data. However, in applying
GLMs, authors frequently neglect the hierarchical structure of sex ratio data, thereby increasing the likelihood of committing ‘type I’ error. Here, we argue that whenever clustered (e.g., brood) sex ratios represent the desired level of statistical inference, the clustered data
structure ought to be taken into account to avoid invalid conclusions. Neglecting the between-cluster variation and the finite number of clusters in determining test statistics, as implied by using likelihood ratio-based χ2-statistics in conventional GLM, results in biased (usually overestimated) test statistics and pseudoreplication of the sample. Random variation in the sex ratio between clusters
(broods) can often be accommodated by scaling residual binomial (error) variance for overdispersion, and using F-tests instead of χ2-tests. More complex situations, however, require the use of generalized linear mixed models (GLMMs). By introducing higher-level
random effects in addition to the residual error term, GLMMs allow an estimation of fixed effect and interaction parameters while accounting for random effects at different levels of the data. GLMMs are first required in sex ratio analyses whenever there are covariates at the offspring level of the data, but inferences are to be drawn
at the brood level. Second, when interactions of effects at different levels of the data are to be estimated, random fluctuation of parameters can be taken into account only
in GLMMs. Data structures requiring the use of GLMMs to avoid erroneous inferences are often encountered in ecological sex ratio studies.

Citations

121 citations in Web of Science®
119 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
DDC:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2001
Deposited On:11 Feb 2008 12:15
Last Modified:28 Nov 2013 00:00
Publisher:Springer
ISSN:0340-5443
Publisher DOI:10.1007/s002650100366

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page