UZH-Logo

Maintenance Infos

Mitochondria in chronic liver disease


Grattagliano, I; Russmann, S; Diogo, C V; Bonfrate, L; Oliveira, P J; Wang, D Q H; Portincasa, P (2011). Mitochondria in chronic liver disease. Current Drug Targets, 12(6):879-893.

Abstract

Mitochondria are the main energy source in hepatocytes and play a major role in extensive oxidative metabolism and normal function of the liver. This key role also assigns mitochondria a gateway function in the center of signaling pathways that mediate hepatocyte injury, because impaired mitochondrial functions affect cell survival and contribute to the onset and perpetuation of liver diseases. Altered mitochondrial functions have indeed been documented in a variety of chronic liver diseases including alcohol-induced liver disease, nonalcoholic fatty liver disease, viral hepatitis, primary and secondary cholestasis, hemochromatosis, and Wilson's disease. Major changes include impairment of the electron transport chain and/or oxidative phosphorylation leading to decreased oxidative metabolism of various substrates, decreased ATP synthesis, and reduced hepatocyte tolerance towards stressing insults. Functional impairment of mitochondria is often accompanied by structural changes, resulting in organelle swelling and formation of inclusion in the mitochondrial matrix. Adequate mitochondrial functions in hepatocytes are maintained by mitochondrial proliferation and/or increased activity of critical enzymes. The assessment of mitochondrial functions in vivo can be a useful tool in liver diseases for diagnostic and prognostic purposes, and also for the evaluation of (novel) therapeutic interventions.

Mitochondria are the main energy source in hepatocytes and play a major role in extensive oxidative metabolism and normal function of the liver. This key role also assigns mitochondria a gateway function in the center of signaling pathways that mediate hepatocyte injury, because impaired mitochondrial functions affect cell survival and contribute to the onset and perpetuation of liver diseases. Altered mitochondrial functions have indeed been documented in a variety of chronic liver diseases including alcohol-induced liver disease, nonalcoholic fatty liver disease, viral hepatitis, primary and secondary cholestasis, hemochromatosis, and Wilson's disease. Major changes include impairment of the electron transport chain and/or oxidative phosphorylation leading to decreased oxidative metabolism of various substrates, decreased ATP synthesis, and reduced hepatocyte tolerance towards stressing insults. Functional impairment of mitochondria is often accompanied by structural changes, resulting in organelle swelling and formation of inclusion in the mitochondrial matrix. Adequate mitochondrial functions in hepatocytes are maintained by mitochondrial proliferation and/or increased activity of critical enzymes. The assessment of mitochondrial functions in vivo can be a useful tool in liver diseases for diagnostic and prognostic purposes, and also for the evaluation of (novel) therapeutic interventions.

Citations

21 citations in Web of Science®
22 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Clinical Pharmacology and Toxicology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:23 Aug 2011 12:17
Last Modified:05 Apr 2016 14:49
Publisher:Bentham Science
ISSN:1389-4501
Publisher DOI:https://doi.org/10.2174/138945011795528877
PubMed ID:21269263

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations