UZH-Logo

Maintenance Infos

Microwave-hydrothermal synthesis of nanostructured zinc-copper gallates


Conrad, F; Zhou, Y; Yulikov, M; Hametner, K; Weyeneth, S; Jeschke, G; Guenther, D; Grunwaldt, J D; Patzke, G R (2010). Microwave-hydrothermal synthesis of nanostructured zinc-copper gallates. European Journal of Inorganic Chemistry, (13):2036-2043.

Abstract

Zinc gallate is an important semiconductor for manifold applications, e.g. in field emission displays or as a photocatalyst for water splitting. In addition to these interesting properties, zinc gallate is also an excellent matrix material that can be furthermore tuned through the incorporation of guest cations to form functional solid solutions with new optical and catalytic properties. We present a convenient microwave-hydrothermal synthesis of nanostructured Cu2+-substituted ZnGa2O4 spinels and their characterization with respect to morphology, chemical composition, structural, magnetic and optical properties. The microwave-based approach offers a straightforward and one-step access to nanostructured zinc gallate-based materials and related compounds as a new preparative advantage. As the properties of mixed spinel-based solid solutions strongly depend on the distribution of the guest ions between the different lattice sites, we have employed a wide range of analytical techniques to investigate the physico-chemical properties of the obtained copper-containing zinc gallate materials. The element specific EX-AFS analysis at the Cu K- and Zn K-edge shows a difference in the coordination environments with Zn mostly situated on the tetrahedral sites of the spinel lattice whereas Cu is located on the octahedral sites of the nanostructured ZnGa2O4:Cu2+ materials.

Zinc gallate is an important semiconductor for manifold applications, e.g. in field emission displays or as a photocatalyst for water splitting. In addition to these interesting properties, zinc gallate is also an excellent matrix material that can be furthermore tuned through the incorporation of guest cations to form functional solid solutions with new optical and catalytic properties. We present a convenient microwave-hydrothermal synthesis of nanostructured Cu2+-substituted ZnGa2O4 spinels and their characterization with respect to morphology, chemical composition, structural, magnetic and optical properties. The microwave-based approach offers a straightforward and one-step access to nanostructured zinc gallate-based materials and related compounds as a new preparative advantage. As the properties of mixed spinel-based solid solutions strongly depend on the distribution of the guest ions between the different lattice sites, we have employed a wide range of analytical techniques to investigate the physico-chemical properties of the obtained copper-containing zinc gallate materials. The element specific EX-AFS analysis at the Cu K- and Zn K-edge shows a difference in the coordination environments with Zn mostly situated on the tetrahedral sites of the spinel lattice whereas Cu is located on the octahedral sites of the nanostructured ZnGa2O4:Cu2+ materials.

Citations

10 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2010
Deposited On:23 Feb 2011 17:55
Last Modified:05 Apr 2016 14:49
Publisher:Wiley-Blackwell
ISSN:1434-1948
Publisher DOI:10.1002/ejic.200901169
Other Identification Number:ISI:000278042500014

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations