UZH-Logo

Maintenance Infos

Targeted synthesis and environmental applications of oxide nanomaterials


Zhou, Y; Patzke, G R (2010). Targeted synthesis and environmental applications of oxide nanomaterials. CHIMIA International Journal for Chemistry, 64(4):252-258.

Abstract

Oxide nanomaterials are indispensable building blocks for a future nanotechnology, because they offer an infinite variety of structural motifs that lead to their widespread technical application. Therefore, flexible and tunable preparative strategies are required to convert this large family of materials onto the nanoscale. Although hydrothermal syntheses have proven especially suitable for this purpose, their reaction pathways and mechanisms often remain unknown so that they can be difficult to control. In the following, we summarize our comprehensive approach towards nanostructured functional oxides that is based on synthetic parameter optimizations, mechanistic in situ investigations and the characterization of environmentally relevant properties, e.g. in photocatalysis or sensor technology. The connection between preparative morphology control and the resulting materials properties is demonstrated for selected tungstate systems and bismuth-containing oxides. Furthermore, different methods for the in situ monitoring of hydrothermal processes are discussed.

Oxide nanomaterials are indispensable building blocks for a future nanotechnology, because they offer an infinite variety of structural motifs that lead to their widespread technical application. Therefore, flexible and tunable preparative strategies are required to convert this large family of materials onto the nanoscale. Although hydrothermal syntheses have proven especially suitable for this purpose, their reaction pathways and mechanisms often remain unknown so that they can be difficult to control. In the following, we summarize our comprehensive approach towards nanostructured functional oxides that is based on synthetic parameter optimizations, mechanistic in situ investigations and the characterization of environmentally relevant properties, e.g. in photocatalysis or sensor technology. The connection between preparative morphology control and the resulting materials properties is demonstrated for selected tungstate systems and bismuth-containing oxides. Furthermore, different methods for the in situ monitoring of hydrothermal processes are discussed.

Citations

3 citations in Web of Science®
3 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

277 downloads since deposited on 24 Feb 2011
40 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2010
Deposited On:24 Feb 2011 18:26
Last Modified:05 Apr 2016 14:49
Publisher:Swiss Chemical Society
ISSN:0009-4293
Additional Information:Copyright ©Swiss Chemical Society: CHIMIA, 64(4):252-258 (2010)
Publisher DOI:https://doi.org/10.2533/chimia.2010.252
PubMed ID:21138192
Other Identification Number:ISI:000277832300008
Permanent URL: https://doi.org/10.5167/uzh-46576

Download

[img]
Preview
Filetype: PDF (Verlags-PDF)
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations