UZH-Logo

Maintenance Infos

Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex


Deng, Y; Wu, J; Eberl, L; Zhang, L H (2010). Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Applied and Environmental Microbiology, 76(14):4675-4683.

Abstract

Previous work has shown that Burkholderia cenocepacia produces the diffusible signal factor (DSF) family signal cis-2-dodecenoic acid (C(12):Delta(2), also known as BDSF), which is involved in the regulation of virulence. In this study, we determined whether C(12):Delta(2) production is conserved in other members of the Burkholderia cepacia complex (Bcc) by using a combination of high-performance liquid chromatography, mass spectrometry, and bioassays. Our results show that five Bcc species are capable of producing C(12):Delta(2) as a sole DSF family signal, while four species produce not only C(12):Delta(2) but also a new DSF family signal, which was identified as cis,cis-11-methyldodeca-2,5-dienoic acid (11-Me-C(12):Delta(2,5)). In addition, we demonstrate that the quorum-sensing signal cis-11-methyl-2-dodecenoic acid (11-Me-C(12):Delta(2)), which was originally identified in Xanthomonas campestris supernatants, is produced by Burkholderia multivorans. It is shown that, similar to 11-Me-C(12):Delta(2) and C(12):Delta(2), the newly identified molecule 11-Me-C(12):Delta(2,5) is a potent signal in the regulation of biofilm formation, the production of virulence factors, and the morphological transition of Candida albicans. These data provide evidence that DSF family molecules are highly conserved bacterial cell-cell communication signals that play key roles in the ecology of the organisms that produce them.

Previous work has shown that Burkholderia cenocepacia produces the diffusible signal factor (DSF) family signal cis-2-dodecenoic acid (C(12):Delta(2), also known as BDSF), which is involved in the regulation of virulence. In this study, we determined whether C(12):Delta(2) production is conserved in other members of the Burkholderia cepacia complex (Bcc) by using a combination of high-performance liquid chromatography, mass spectrometry, and bioassays. Our results show that five Bcc species are capable of producing C(12):Delta(2) as a sole DSF family signal, while four species produce not only C(12):Delta(2) but also a new DSF family signal, which was identified as cis,cis-11-methyldodeca-2,5-dienoic acid (11-Me-C(12):Delta(2,5)). In addition, we demonstrate that the quorum-sensing signal cis-11-methyl-2-dodecenoic acid (11-Me-C(12):Delta(2)), which was originally identified in Xanthomonas campestris supernatants, is produced by Burkholderia multivorans. It is shown that, similar to 11-Me-C(12):Delta(2) and C(12):Delta(2), the newly identified molecule 11-Me-C(12):Delta(2,5) is a potent signal in the regulation of biofilm formation, the production of virulence factors, and the morphological transition of Candida albicans. These data provide evidence that DSF family molecules are highly conserved bacterial cell-cell communication signals that play key roles in the ecology of the organisms that produce them.

Citations

43 citations in Web of Science®
42 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 24 Feb 2011
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2010
Deposited On:24 Feb 2011 16:37
Last Modified:05 Apr 2016 14:50
Publisher:American Society for Microbiology
ISSN:0099-2240
Publisher DOI:10.1128/AEM.00480-10
PubMed ID:20511428
Permanent URL: http://doi.org/10.5167/uzh-46703

Download

[img]
Filetype: PDF - Registered users only
Size: 3MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations