UZH-Logo

Maintenance Infos

Quantative MRI in isotropic spatial resolution for forensic soft tissue documentation. Why and how?


Jackowksi, C; Warntjes, M J B; Kihlberg, J; Berge, J; Thali, M; Persson, A (2011). Quantative MRI in isotropic spatial resolution for forensic soft tissue documentation. Why and how? Journal of Forensic Sciences, 56(1):208-215.

Abstract

A quantification of T1, T2, and PD in high isotropic resolution was performed on corpses. Isotropic and quantified postmortem magnetic resonance (IQpmMR) enables sophisticated 3D postprocessing, such as reformatting and volume rendering. The body tissues can be characterized by the combination of these three values. The values of T1, T2, and PD were given as coordinates in a T1-T2-PD space where similar tissue voxels formed clusters. Implementing in a volume rendering software enabled color encoding of specific tissues and pathologies in 3D models of the corpse similar to computed tomography, but with distinctively more powerful soft tissue discrimination. From IQpmMR data, any image plane at any contrast weighting may be calculated or 3D color-encoded volume rendering may be carried out. The introduced approach will enable future computer-aided diagnosis that, e.g., checks corpses for a hemorrhage distribution based on the knowledge of its T1-T2-PD vector behavior in a high spatial resolution.

Abstract

A quantification of T1, T2, and PD in high isotropic resolution was performed on corpses. Isotropic and quantified postmortem magnetic resonance (IQpmMR) enables sophisticated 3D postprocessing, such as reformatting and volume rendering. The body tissues can be characterized by the combination of these three values. The values of T1, T2, and PD were given as coordinates in a T1-T2-PD space where similar tissue voxels formed clusters. Implementing in a volume rendering software enabled color encoding of specific tissues and pathologies in 3D models of the corpse similar to computed tomography, but with distinctively more powerful soft tissue discrimination. From IQpmMR data, any image plane at any contrast weighting may be calculated or 3D color-encoded volume rendering may be carried out. The introduced approach will enable future computer-aided diagnosis that, e.g., checks corpses for a hemorrhage distribution based on the knowledge of its T1-T2-PD vector behavior in a high spatial resolution.

Citations

9 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 24 Feb 2011
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Legal Medicine
Dewey Decimal Classification:340 Law
610 Medicine & health
Language:English
Date:2011
Deposited On:24 Feb 2011 15:52
Last Modified:05 Apr 2016 14:50
Publisher:Wiley-Blackwell
ISSN:0022-1198
Publisher DOI:https://doi.org/10.1111/j.1556-4029.2010.01547.x
PubMed ID:20840290

Download

[img]
Content: Submitted Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations