UZH-Logo

Maintenance Infos

Targeted integration of functional human ATM cDNA into genome mediated by HSV/AAV hybrid amplicon vector


Cortes, M L; Oehmig, A; Saydam, O; Sanford, J D; Perry, K F; Fraefel, C; Breakefield, X (2008). Targeted integration of functional human ATM cDNA into genome mediated by HSV/AAV hybrid amplicon vector. Molecular Therapy, 16(1):81-88.

Abstract

Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, immunodeficiency, cancer predisposition, genome instability, and sensitivity to ionizing radiation (IR). We have previously shown that a herpes simplex virus type 1 (HSV-1) amplicon vector carrying the human ataxia-telangiectasia mutated (ATM) complementary DNA (cDNA) is able to correct aspects of the cellular phenotype of human A-T cells in culture, and is also able to transfer the ATM cDNA to the Atm–/– mouse cerebellum. In order to achieve stable gene replacement, we have generated an HSV/adeno-associated virus (AAV) hybrid amplicon vector carrying the expression cassettes for the ATM cDNA [(9.2 kilobases (kb)] and enhanced green fluorescent protein (EGFP), flanked by AAV inverted terminal repeats (ITRs). This hybrid vector, in the presence of AAV Rep proteins, mediates site-specific integration into the AAVS1 site on chromosome 19 in human cells and in Atm–/– mice carrying that human locus. The functional activity of the vector-derived ATM was confirmed in vitro and in vivo by ATM autophosphorylation at Ser-1981 after IR. This proof-of-principle study establishes the ability of HSV/AAV hybrid amplicon vectors to mediate functional targeted integration of the ATM cDNA into A-T cells in culture and in Atm–/– mice in vivo, thus laying a foundation for possible gene therapy approaches in the treatment of A-T patients.

Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, immunodeficiency, cancer predisposition, genome instability, and sensitivity to ionizing radiation (IR). We have previously shown that a herpes simplex virus type 1 (HSV-1) amplicon vector carrying the human ataxia-telangiectasia mutated (ATM) complementary DNA (cDNA) is able to correct aspects of the cellular phenotype of human A-T cells in culture, and is also able to transfer the ATM cDNA to the Atm–/– mouse cerebellum. In order to achieve stable gene replacement, we have generated an HSV/adeno-associated virus (AAV) hybrid amplicon vector carrying the expression cassettes for the ATM cDNA [(9.2 kilobases (kb)] and enhanced green fluorescent protein (EGFP), flanked by AAV inverted terminal repeats (ITRs). This hybrid vector, in the presence of AAV Rep proteins, mediates site-specific integration into the AAVS1 site on chromosome 19 in human cells and in Atm–/– mice carrying that human locus. The functional activity of the vector-derived ATM was confirmed in vitro and in vivo by ATM autophosphorylation at Ser-1981 after IR. This proof-of-principle study establishes the ability of HSV/AAV hybrid amplicon vectors to mediate functional targeted integration of the ATM cDNA into A-T cells in culture and in Atm–/– mice in vivo, thus laying a foundation for possible gene therapy approaches in the treatment of A-T patients.

Citations

16 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 19 Jan 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Virology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:January 2008
Deposited On:19 Jan 2009 15:47
Last Modified:05 Apr 2016 12:31
Publisher:Nature Publishing Group
ISSN:1525-0016
Publisher DOI:10.1038/sj.mt.6300338
PubMed ID:17998902
Permanent URL: http://doi.org/10.5167/uzh-4680

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations