UZH-Logo

Maintenance Infos

Expertise reduces neural cost but does not modulate repetition suppression


Wiesmann, M; Ishai, A (2011). Expertise reduces neural cost but does not modulate repetition suppression. Cognitive Neuroscience, 2(1):57-65.

Abstract

The extent to which repetition suppression is modulated by expertise is currently unknown. We used event-related fMRI to test whether architecture students would respond faster to buildings and would exhibit stronger repetition suppression in the fusiform gyrus (FG) and parahippocampa cortex (PHC) than students from other disciplines. Behaviorally, we found shorter response latencies with target repetition in all subjects. Moreover, the repetition of targets and distracters was associated with decreased neural responses in the FG and PHC in all subjects. In control, but not in architecture students, reaction times during the first repetition of the target were correlated with activation in the cuneus, lingual gyrus, inferior parietal lobule, insula, and anterior cingulate cortex, indicating that the non-experts had to recruit additional regions in order to perform the task. Our findings suggest that due to their expertise, architects were able to encode and detect building stimuli at a lower neural cost.

The extent to which repetition suppression is modulated by expertise is currently unknown. We used event-related fMRI to test whether architecture students would respond faster to buildings and would exhibit stronger repetition suppression in the fusiform gyrus (FG) and parahippocampa cortex (PHC) than students from other disciplines. Behaviorally, we found shorter response latencies with target repetition in all subjects. Moreover, the repetition of targets and distracters was associated with decreased neural responses in the FG and PHC in all subjects. In control, but not in architecture students, reaction times during the first repetition of the target were correlated with activation in the cuneus, lingual gyrus, inferior parietal lobule, insula, and anterior cingulate cortex, indicating that the non-experts had to recruit additional regions in order to perform the task. Our findings suggest that due to their expertise, architects were able to encode and detect building stimuli at a lower neural cost.

Citations

Altmetrics

Downloads

69 downloads since deposited on 27 Feb 2011
11 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neuroradiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2011
Deposited On:27 Feb 2011 13:52
Last Modified:05 Apr 2016 14:50
Publisher:Taylor & Francis Group
ISSN:1758-8936
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1080/17588928.2010.525628
PubMed ID:21479254
Permanent URL: https://doi.org/10.5167/uzh-46899

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 969kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations