Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-4697

Hess, A; Sergejeva, M; Budinsky, L; Zeilhofer, H U; Brune, K (2007). Imaging of hyperalgesia in rats by functional MRI. European Journal of Pain, 11(1):109-119.

[img] PDF - Registered users only
View at publisher


Cerebral activation in response to sequences of temperature boosts at the hindpaw was observed in functional magnetic resonance imaging (fMRI) experiments in isoflurane anesthetized rats. Cingulate, retrosplenial, sensory-motor and insular cortex, medial and lateral posterior thalamic nuclei, pretectal area, hypothalamus and periaqueductal gray were the most consistently, often bilaterally activated regions. With the same experimental paradigm, activity changes in the brain following subcutaneous zymosan injection into one hindpaw were detected. These changes developed over time (up to 4h) in parallel with the temporal development of hyperalgesia shown by a modified Hargreaves test, thus reflecting processes of peripheral and central sensitization. When the heat stimuli were applied to the inflamed paw, the hyperalgesia manifested itself as a volume increase of the activated areas and/or an enhanced functional blood oxygenation level dependent (BOLD) signal in all the above-mentioned brain regions. Enhanced BOLD signals were also observed in response to stimulation of the contralateral non-injected paw. They were significant in higher associative regions and more pronounced in output-related than in input-related brain structures. This indicates additional sensitization processes in the brain, which we named cerebral sensitization. Long lasting zymosan-induced hyperalgesia could be monitored with high resolution fMRI in rats under isoflurane anaesthesia. This technique may provide an effective method for testing new analgesics and studying structure specific pain processing.


49 citations in Web of Science®
53 citations in Scopus®
Google Scholar™



1 download since deposited on 20 Mar 2009
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:January 2007
Deposited On:20 Mar 2009 13:04
Last Modified:05 Apr 2016 12:31
Publisher DOI:10.1016/j.ejpain.2006.01.005
PubMed ID:16517192

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page