UZH-Logo

Maintenance Infos

Modulation by salt intake of the vascular response mediated through adenosine A(2A) receptor: role of CYP epoxygenase and soluble epoxide hydrolase


Nayeem, M A; Zeldin, D C; Boegehold, M A; Morisseau, C; Marowsky, A; Ponnoth, D S; Roush, K P; Falck, J R (2010). Modulation by salt intake of the vascular response mediated through adenosine A(2A) receptor: role of CYP epoxygenase and soluble epoxide hydrolase. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 299(1):R325-R333.

Abstract

High-salt intake can change the effect of adenosine on arterial tone in mice. The aim of this study was to clarify the mechanism by which this occurs. Using aortas from mice fed a 4% NaCl (HS) or 0.45% NaCl (NS) diet for 4-5 wks, concentration-response curves for ACh, 5'-N-ethylcarboxamidoadenosine (NECA; adenosine analog) and 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate [CGS-21680; A(2A) adenosine receptor (A(2A) AR) agonist] were obtained with N(omega)-nitro-L-arginine methyl ester (L-NAME; nitric oxide inhibitor, 10(-4) M), methylsulfonyl-propargyloxyphenylhexanamide [MS-PPOH; a CYP (cytochrome P-450) epoxygenase blocker, 10(-5) M including CYP2J2], 12-(3-adamantan-1-yl-ureido)dodecanoic acid [AUDA; soluble epoxide hydrolase (sEH) blocker, 10(-5) M], dibromo-dodecenyl-methylsulfimide [DDMS; CYP omega-hydroxylase (CYP4A blocker), 10(-5) M], glibenclamide (K(ATP) channel blocker; 10(-5) M) and 5-hydroxydecanoate (5-HD; mitochondrial-K(ATP) channel blocker, 10(-4) M). HS dose response to ACh (10(-7) - 10(-5) M) was not different from NS (P > 0.05). Relaxation to 10(-6) M NECA was greater in the HS group (28.4 +/- 3.9%) than in the NS group (4.1 +/- 2.3%). Relaxation to 10(-6) M CGS-21680 was also greater in HS (27.9 +/- 4.5%) than in NS (4.9 +/- 2.2%). L-NAME was able to block the dose response of ACh (10(-7) - 10(-5) M) equally in both HS and NS (P > 0.05), whereas L-NAME did not block CGS-21680-induced response in HS. In HS the CGS-21680 response was greatly reduced by MS-PPOH (to 4.7 +/- 2.0%) and 5-HD (to 8.9 +/- 2.2%), and also abolished by glibenclamide (-1.0 +/- 5.9%). In NS, the CGS-21680 response was increased by AUDA (to 26.3 +/- 3.4%) and DDMS (to 27.2 +/- 3.0%). Compared with NS, HS vessels showed increased CYP2J2 and A(2A) AR expression (46 and 74% higher, respectively) but decreased sEH, CYP4A, and A(1) AR expression (75, 30, and 55% lower, respectively). These data suggest that in mice fed NS-containing diet, upregulation of arterial A(1) receptor causes vasoconstriction via increased sEH and CYP4A proteins. However, in mice fed HS-containing diet, upregulation of A(2A) receptor protein triggers vascular relaxation through ATP-sensitive (K(+)) channels via upregulation of CYP2J2 enzyme.

Abstract

High-salt intake can change the effect of adenosine on arterial tone in mice. The aim of this study was to clarify the mechanism by which this occurs. Using aortas from mice fed a 4% NaCl (HS) or 0.45% NaCl (NS) diet for 4-5 wks, concentration-response curves for ACh, 5'-N-ethylcarboxamidoadenosine (NECA; adenosine analog) and 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate [CGS-21680; A(2A) adenosine receptor (A(2A) AR) agonist] were obtained with N(omega)-nitro-L-arginine methyl ester (L-NAME; nitric oxide inhibitor, 10(-4) M), methylsulfonyl-propargyloxyphenylhexanamide [MS-PPOH; a CYP (cytochrome P-450) epoxygenase blocker, 10(-5) M including CYP2J2], 12-(3-adamantan-1-yl-ureido)dodecanoic acid [AUDA; soluble epoxide hydrolase (sEH) blocker, 10(-5) M], dibromo-dodecenyl-methylsulfimide [DDMS; CYP omega-hydroxylase (CYP4A blocker), 10(-5) M], glibenclamide (K(ATP) channel blocker; 10(-5) M) and 5-hydroxydecanoate (5-HD; mitochondrial-K(ATP) channel blocker, 10(-4) M). HS dose response to ACh (10(-7) - 10(-5) M) was not different from NS (P > 0.05). Relaxation to 10(-6) M NECA was greater in the HS group (28.4 +/- 3.9%) than in the NS group (4.1 +/- 2.3%). Relaxation to 10(-6) M CGS-21680 was also greater in HS (27.9 +/- 4.5%) than in NS (4.9 +/- 2.2%). L-NAME was able to block the dose response of ACh (10(-7) - 10(-5) M) equally in both HS and NS (P > 0.05), whereas L-NAME did not block CGS-21680-induced response in HS. In HS the CGS-21680 response was greatly reduced by MS-PPOH (to 4.7 +/- 2.0%) and 5-HD (to 8.9 +/- 2.2%), and also abolished by glibenclamide (-1.0 +/- 5.9%). In NS, the CGS-21680 response was increased by AUDA (to 26.3 +/- 3.4%) and DDMS (to 27.2 +/- 3.0%). Compared with NS, HS vessels showed increased CYP2J2 and A(2A) AR expression (46 and 74% higher, respectively) but decreased sEH, CYP4A, and A(1) AR expression (75, 30, and 55% lower, respectively). These data suggest that in mice fed NS-containing diet, upregulation of arterial A(1) receptor causes vasoconstriction via increased sEH and CYP4A proteins. However, in mice fed HS-containing diet, upregulation of A(2A) receptor protein triggers vascular relaxation through ATP-sensitive (K(+)) channels via upregulation of CYP2J2 enzyme.

Citations

6 citations in Web of Science®
9 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 28 Feb 2011
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:July 2010
Deposited On:28 Feb 2011 16:15
Last Modified:05 Apr 2016 14:51
Publisher:American Physiological Society
ISSN:0363-6119
Publisher DOI:https://doi.org/10.1152/ajpregu.00823.2009
PubMed ID:20427718

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations