UZH-Logo

Maintenance Infos

Pancreatic islet transplantation using vascularised chambers containing nerve growth factor ameliorates hyperglycaemia in diabetic mice


Hussey, A J; Winardi, M; Wilson, J; Forster, N; Morrison, W A; Penington, A J; Knight, K R; Feeney, S J (2010). Pancreatic islet transplantation using vascularised chambers containing nerve growth factor ameliorates hyperglycaemia in diabetic mice. Cells Tissues Organs, 191(5):382-393.

Abstract

Intraportal islet transplantation has shown initial promise for the treatment of type 1 diabetes. However, the portal vein site is associated with complications such as thrombosis and hepatic steatosis, leading to transplant failure. The aims of this study were to (1) test the feasibility of an alternative islet transplantation method that utilises a FDA-approved gelatin sponge as a novel islet carrier and (2) assess if exogenous addition of nerve growth factor (NGF) has any additional beneficial effects on graft performance in diabetic mice. Mice were rendered diabetic by a single intraperitoneal injection of streptozotocin. Five hundred syngeneic islets were seeded onto a Gelitaspon((R)) disc in the presence or absence of NGF, and placed into a silicone chamber surrounding the femoral neurovascular pedicle. Islet function was assessed by weekly monitoring of blood glucose levels and an intraperitoneal glucose tolerance test performed at the end of the study. Chambers were harvested for further histological analysis. Four of five mice transplanted with islets seeded onto Gelitaspon with NGF showed a significant reduction in blood glucose levels by 4 weeks after transplantation, and demonstrated a response similar to non-diabetic mice when tested with an intraperitoneal glucose tolerance test. Chamber tissue from this group contained islets with insulin-producing beta cells adjacent to the vascular pedicle. Islets seeded onto Gelitaspon with NGF and sited on femoral vessels using a tissue-engineering chamber offer an alternative method for islet transplantation in diabetic mice. This may have potential as a method for clinical islet transplantation.

Abstract

Intraportal islet transplantation has shown initial promise for the treatment of type 1 diabetes. However, the portal vein site is associated with complications such as thrombosis and hepatic steatosis, leading to transplant failure. The aims of this study were to (1) test the feasibility of an alternative islet transplantation method that utilises a FDA-approved gelatin sponge as a novel islet carrier and (2) assess if exogenous addition of nerve growth factor (NGF) has any additional beneficial effects on graft performance in diabetic mice. Mice were rendered diabetic by a single intraperitoneal injection of streptozotocin. Five hundred syngeneic islets were seeded onto a Gelitaspon((R)) disc in the presence or absence of NGF, and placed into a silicone chamber surrounding the femoral neurovascular pedicle. Islet function was assessed by weekly monitoring of blood glucose levels and an intraperitoneal glucose tolerance test performed at the end of the study. Chambers were harvested for further histological analysis. Four of five mice transplanted with islets seeded onto Gelitaspon with NGF showed a significant reduction in blood glucose levels by 4 weeks after transplantation, and demonstrated a response similar to non-diabetic mice when tested with an intraperitoneal glucose tolerance test. Chamber tissue from this group contained islets with insulin-producing beta cells adjacent to the vascular pedicle. Islets seeded onto Gelitaspon with NGF and sited on femoral vessels using a tissue-engineering chamber offer an alternative method for islet transplantation in diabetic mice. This may have potential as a method for clinical islet transplantation.

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

18 downloads since deposited on 25 Mar 2011
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Reconstructive Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2010
Deposited On:25 Mar 2011 13:37
Last Modified:01 Jul 2016 10:52
Publisher:Karger
ISSN:1422-6405
Publisher DOI:https://doi.org/10.1159/000276595
PubMed ID:20090306

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations