UZH-Logo

Maintenance Infos

Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion


Hafner-Bratkovic, I; Bester, R; Pristovsek, P; Gaedtke, L; Veranic, P; Gaspersic, J; Mancek-Keber, M; Avbelj, M; Polymenidou, M; Julius, C; Aguzzi, A; Vorberg, I; Jerala, R (2011). Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion. Journal of Biological Chemistry, 286(14):12149-12156.

Abstract

Prion diseases are fatal transmissible neurodegenerative diseases affecting many mammalian species. The normal prion protein (PrP) converts into a pathological aggregated form, PrPSc, which is enriched in the β-sheet structure. While the high resolution structure of the normal PrP was determined, the structure of the converted form of PrP remains inaccessible to high resolution techniques. In order to map the PrP conversion process we introduced disulfide bridges into different positions within the globular domain of PrP, tethering selected secondary structure elements. The majority of tethered PrP mutants exhibited increased thermodynamic stability, nevertheless they converted efficiently. Only the disulfides which tether subdomain B1-H1-B2 to subdomain H2-H3 prevented PrP conversion in vitro and in prion infected cell cultures. Reduction of disulfides recovered the ability of these mutants to convert, demonstrating that the separation of subdomains is an essential step in conversion. Formation of disulfide-linked proteinase K-resistant dimers in fibrils composed of a pair of single cysteine mutants supports the model based on domain-swapped dimers as the building blocks of prion fibrils. In contrast to previously proposed structural models of PrPSc suggesting conversion of large secondary structure segments, we provide evidence for the conservation of secondary structure elements of the globular domain upon PrP conversion. Previous studies already showed that dimerization is the rate-limiting step in PrP conversion. We show that separation and swapping of subdomains of the globular domain is necessary for conversion. Therefore, we propose that domain-swapped dimer of PrP precedes amyloid formation and represents a potential target for therapeutic intervention.

Prion diseases are fatal transmissible neurodegenerative diseases affecting many mammalian species. The normal prion protein (PrP) converts into a pathological aggregated form, PrPSc, which is enriched in the β-sheet structure. While the high resolution structure of the normal PrP was determined, the structure of the converted form of PrP remains inaccessible to high resolution techniques. In order to map the PrP conversion process we introduced disulfide bridges into different positions within the globular domain of PrP, tethering selected secondary structure elements. The majority of tethered PrP mutants exhibited increased thermodynamic stability, nevertheless they converted efficiently. Only the disulfides which tether subdomain B1-H1-B2 to subdomain H2-H3 prevented PrP conversion in vitro and in prion infected cell cultures. Reduction of disulfides recovered the ability of these mutants to convert, demonstrating that the separation of subdomains is an essential step in conversion. Formation of disulfide-linked proteinase K-resistant dimers in fibrils composed of a pair of single cysteine mutants supports the model based on domain-swapped dimers as the building blocks of prion fibrils. In contrast to previously proposed structural models of PrPSc suggesting conversion of large secondary structure segments, we provide evidence for the conservation of secondary structure elements of the globular domain upon PrP conversion. Previous studies already showed that dimerization is the rate-limiting step in PrP conversion. We show that separation and swapping of subdomains of the globular domain is necessary for conversion. Therefore, we propose that domain-swapped dimer of PrP precedes amyloid formation and represents a potential target for therapeutic intervention.

Citations

45 citations in Web of Science®
49 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

67 downloads since deposited on 31 Mar 2011
21 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:31 Mar 2011 07:06
Last Modified:26 Aug 2016 07:32
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1074/jbc.M110.213926
PubMed ID:21324909
Permanent URL: http://doi.org/10.5167/uzh-47834

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations