UZH-Logo

Maintenance Infos

The schizophrenia risk allele C of the TCF4 rs9960767 polymorphism disrupts sensorimotor gating in schizophrenia spectrum and healthy volunteers


Quednow, B B; Ettinger, U; Mössner, R; Rujescu, D; Giegling, I; Collier, D A; Schmechtig, A; Kühn, K U; Möller, H J; Maier, W; Wagner, M; Kumari, V (2011). The schizophrenia risk allele C of the TCF4 rs9960767 polymorphism disrupts sensorimotor gating in schizophrenia spectrum and healthy volunteers. Journal of Neuroscience, 31(18):6684-6691.

Abstract

In a large-scale meta-analysis, it has been recently shown that the transcription factor 4 (TCF4) gene is among the most prominent susceptibility genes for schizophrenia. Moreover, transgenic mice overexpressing TCF4 in the brain display a reduction of sensorimotor gating measured by prepulse inhibition (PPI) of the acoustic startle response (ASR). PPI is heritable and has been established as an important translational endophenotype of schizophrenia. We therefore investigated the impact of the schizophrenia susceptibility gene TCF4 (rs9960767) on sensorimotor gating of the ASR in healthy humans and in patients with a schizophrenia spectrum disorder. We assessed PPI, startle reactivity, and habituation of the ASR in two independent samples. The first sample consisted of 107 healthy volunteers from London, UK. The second sample was a schizophrenia spectrum group (n = 113) of 73 schizophrenia patients and 40 individuals at high risk for schizophrenia from Bonn, Germany (total sample n = 220). In both samples, PPI was strongly decreased in carriers of the schizophrenia risk allele C of the TCF4 gene (meta-analysis across both samples: p = 0.00002), whereas startle reactivity and habituation were unaffected by TCF4 genotype. Sensorimotor gating is modulated by TCF4 genotype, indicating an influential role of TCF4 gene variations in the development of early information-processing deficits in schizophrenia.

In a large-scale meta-analysis, it has been recently shown that the transcription factor 4 (TCF4) gene is among the most prominent susceptibility genes for schizophrenia. Moreover, transgenic mice overexpressing TCF4 in the brain display a reduction of sensorimotor gating measured by prepulse inhibition (PPI) of the acoustic startle response (ASR). PPI is heritable and has been established as an important translational endophenotype of schizophrenia. We therefore investigated the impact of the schizophrenia susceptibility gene TCF4 (rs9960767) on sensorimotor gating of the ASR in healthy humans and in patients with a schizophrenia spectrum disorder. We assessed PPI, startle reactivity, and habituation of the ASR in two independent samples. The first sample consisted of 107 healthy volunteers from London, UK. The second sample was a schizophrenia spectrum group (n = 113) of 73 schizophrenia patients and 40 individuals at high risk for schizophrenia from Bonn, Germany (total sample n = 220). In both samples, PPI was strongly decreased in carriers of the schizophrenia risk allele C of the TCF4 gene (meta-analysis across both samples: p = 0.00002), whereas startle reactivity and habituation were unaffected by TCF4 genotype. Sensorimotor gating is modulated by TCF4 genotype, indicating an influential role of TCF4 gene variations in the development of early information-processing deficits in schizophrenia.

Citations

31 citations in Web of Science®
38 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

233 downloads since deposited on 12 May 2011
53 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Clinic for Psychiatry, Psychotherapy, and Psychosomatics
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2011
Deposited On:12 May 2011 12:22
Last Modified:05 Apr 2016 14:54
Publisher:Society for Neuroscience
ISSN:0270-6474
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1523/JNEUROSCI.0526-11.2011
PubMed ID:21543597
Permanent URL: http://doi.org/10.5167/uzh-48043

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations